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Abstract. The analysis of social networks often assumes the time
invariant scenario while in practice node attributes and links in such
networks often evolve over time. In this paper, we propose a new
method to predict node attributes and links in temporal networks.

1 INTRODUCTION
A typical representation model for analysis of temporal social net-
works consists of a series of dichotomous adjacency matrices (called
sociomatrices) which define the states of a set of participating agents
at each given observation time [1]. For example, to represent T tem-
poral observations of k actors we will use T binary k × k adjacency
matrices, N1 · · ·NT , where each entry N t

ij = 1 indicates the pres-
ence of a link between the actor i and actor j at time step t; con-
verselyN t

ij = 0 indicates the absence of such a link. Given the social
network link observations N1 · · ·NT , and the actor attribute obser-
vations x1 · · ·xT , where xt is a k-length vector, we aim to make
accurate predictions of the NT+1 and xT+1 in the future step.

Temporal Exponential Random Graphical Model (tERGM) [3]
specifically deals with the temporal aspect of social network anal-
ysis. This model takes the Markovian assumption that each network
matrix is conditionally independent of all other prior observations
given its immediate prior observed matrix. The tERGM model con-
siders only the structures and topologies of the temporal networks,
while node attributes are ignored. A Hidden Temporal Exponential
Random Graph Model (htERGM) [2] recovers latent temporal net-
work structures based on attributes of observed nodes. This approach
learns network structures based on node attributes, but it does not
make predictions of the future step. The application of htERGM is
limited to retrieval of networks of up to 10 nodes because the model
requires to learn two sets of latent parameters.

In this paper, we develop a novel model that facilitates simulta-
neous predictions of the links and the attribute values in temporal
social networks based solely on historical data. Given the evolving
structure of a temporal network and the changing attribute values of
the nodes, we predict the network structure and node values at the
next unobserved time step. Instead of training a single joint probabil-
ity prediction model, we build two conditional exponential random
graph models. These two conditional predictors are mutually depen-
dent on each other, and can then be used to predict the links, and the
attribute values in an alternative way.

2 THE PROPOSED MODEL
We propose to learn directly two interdependent conditional predic-
tion models, link and node prediction models, that can be used to
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predict the network structure and attribute values interdependently to
avoid the expensive inference in htERGM. Our overall model will be
called extended tERGM (etERGM), since the conditional models are
still formulated under the similar framework as the tERGM.

2.1 Node and Link Prediction Models
For node prediction we use the following log-linear model:

P (xt|xt−1, N t,γ) =

1

Z(xt−1, N t,γ)
exp{γ

′
ψ(xt,xt−1, N t)}Pr(xt−1) (1)

It describes the transition of attributes from time t − 1 to time
t, conditioning on the network structure N t at time t. Here, Z
is normalization constant, and Pr(xt−1) is Gaussian multivari-
ate regularization prior estimated from training data. This model
encodes the dependency of the attribute values over the network
structure in a direct way. The model parameter γ is a vec-
tor corresponding to the sufficient statistic vectors ψ which en-
codes the dependencies between the actors links and attributes. We
used three statistics: ψsim(xt,xt−1, N t) =

∑k
i I(x

t
i, x

t−1
i , σ),

ψdyads(x
t,xt−1, N t) = k

D
′
count

Dcount
, ψtriads(x

t,xt−1, N t) =

k
Tr

′
count

Trcount
. ψsim captures the temporal stability of actors’ attributes.

If actors attributes do not change between the observations then ψsim

is large and is small otherwise. I is the identity function which returns
1 if node value at times t and t − 1 is similar to σ degree, where σ
is estimated from the training data. In our experiments I returns 1
if |xti − xt−1

i | < σ where σ is a parameter, and it returns 0 other-
wise. The training data was normalized to one standard deviation and
we customarily set σ = 0.3 . Statistics ψdyads measure the similar-
ity of attributes for the connected nodes. It is a fraction of the total
count of the linked pairs, which have similar attributes, as defined by
I(xti, xtj , σ), to the total count of directly linked pairs of the graph.
Namely, Dcount is the count of all connections in N t and D

′
count is

the count of all connections inN t subject to I(xti, xtj , σ) = 1, N t
ij =

1. ψtriads statistic is related to ψdyads but it operates on triads. Tri-
ads are defined as N t

pq = 1, N t
qr = 1, N t

rp = 1. Trcount is the
count of all triads in N t. Tr

′
count is the count of triads at Trcount

subject to I(xtp, xtq, σ) = 0, I(xtq, xtr, σ) = 0, I(xtr, xtp, σ) = 0.
The links are predicted by a log-linear model defined as:

P (N t|N t−1,xt,θ) =
1

Z(N t−1,xt,θ)
exp{θ

′
ψ(N t, N t−1,xt,θ)

(2)
Similar to the tERGM model, this link prediction model defines the
transition from N t−1 to N t . However, different from before, we in-
corporate the dependency ofN t over the attributes xt into the model



directly, and ψ(N t, N t−1,xt) denotes a list of sufficient statistics.
Here, we reused the four statistics already available from tERGM.
We define the following two additional statistics to capture linkage
of attribute values to the network: ψA and ψB(N

t, N t−1,xt) =

k
L

′
count

L
′′
count

. ψA is the same statistic as ψdyads . Statistics ψB is a ratio

of L
′
count over L

′′
count , where L

′′
count is the count of links in N t

such that I(xti, xtj , σ) = 1. L
′
count is the count of the links at L

′′
count

, subject to additional constraint N t−1
ij = 1.

2.2 Learning Algorithm and Inference
The node and link prediction models proposed in 2.1 are both log-
linear. Two sets of parameters, θ and γ, need to be learned there. To
learn θ we can apply Newton’s optimization method [3] in straight-
forward fashion. Similarly to [3] we apply Newton’s optimization
procedure to learn parameters γ . The main modification of our algo-
rithm from [3] to learn γ is sampling procedure. In a previous study
[3], Gibbs sampling was used to sample from conditional distribu-
tion of sociomatrices. Here, we replaced Gibbs sampling with the
Metropolis-Hastings algorithm to sample from P (xt|xt−1, N t,γ)
distribution.

Since the node and link prediction models are interdependent, we
developed the following iterative algorithm to predict the network
structure and actor’s attributes alternatively:

1. Initialize xt+1=xt

2. Do
3. Sample N̂1 · · · N̂B ∼ P (N t+1|N t,xt+1,θ)
4. N t+1 = average(N̂1 · · · N̂B)
5. Sample x̂1 · · · x̂C ∼ P (xt+1|xt, N t+1,γ)
6. x̂t+1 = mean(x̂1 · · · x̂C)
7. If x̂t+1 and xt+1 have converged
8. xt+1 = x̂t+1

9. exit;
10. xt+1 = x̂t+1

The algorithm starts by initializing the attributes to the values
given in the last time step, xt+1 =xt. In each iteration, it first sam-
ples B sociomatrices from the link prediction model, and sets the
current prediction for N t+1 as the average of these samples. Given
the estimatedN t+1, the inference algorithm then samplesC attribute
vectors from the node prediction model and updates xt+1 as the
mean of these vectors. This iterative process stops when it converges
to static attributes estimations (usually achieved in 3-4 iterations).

3 EXPERIMENTS
To test the proposed method, we conducted experiments on two syn-
thetic datasets and two well studied real life datasets.

The synthetic datasets are generated by defining the etERGM
model that includes the node and link prediction models (1),(2) and
then sampling temporal data from them. The parameters θ and γ
used to define the etERGM model are estimated from the real-life
datasets described below. We sampled a set of sociomatrices with T
time points and corresponding attribute vectors; for training we kept
the first T −1 epochs of the sampled sociomatrices and attribute vec-
tors, and compared the predicted sociomatrix N̂T and vector x̂T to
underlying truth. The accuracy of structure prediction is measured

as links accuracy(N̂T , NT ) = 1 −
∑k

ij |N̂
T
ij−NT

ij |
k2 . The predic-

tion of the actors’ attributes is measured using the mean square error
(MSE). The link prediction results were compared to a baseline pre-
dictor that takes the network structure from the immediate last step:

N̂T = NT−1. For attribute predictions, we used baseline method
that assumes that the node attributes do not change between time
steps : x̂T = xT−1; the other alternative was to use the history mean
as the prediction: x̂T = mean(x1:T−1). We ran experiments on
two synthetic datasets, one had 26 actors and 4 epochs, the second
dataset had 50 actors and 3 epochs. The comparison results on the
two synthetic datasets Dataset1, Dataset2 are reported in Table 1.

We have also conducted experiments on two real life datasets
Delinquency [5] and Teenagers [4]. The Delinquency consists of 4
temporal observation of 26 students where for each observation, the
researchers collected delinquency measure (5 points scale score).
The Teenagers consists of 3 temporal observations of 50 students,
where for each observation the measurement of the students alcohol
consumption was taken (also 5 points scale score). The objective was
to predict the relationship network and students’ attributes for each
dataset. We predicted time step t = 4 in Delinquency and time step
t = 3 in Teenagers. Results of our learning and inference procedures
to obtain predictions also reported at Table 1. All results in Table 1
are reported averages based on 20 runs and are statistically signifi-
cant (p-value < 0.05). In both experiments on synthetic and real life

Table 1. Evaluation on synthetic and real life datasets (Dataset1 Dataset2
Delinquency and Teenagers).

links accuracy Actors attributes (MSE)
etERGM Last

Epoch
etERGM Last

Epoch
Average

Dataset1 90.2% 88.3% 0.0188 0.0199 0.0273
Dataset2 91.3% 89.6% 0.0122 0.0182 0.0134
Delinquency 85.5% 84.9% 0.8944 1.1154 1.0128
Teenagers 83.7% 84.3% 0.7712 0.9000 0.8650

data the etERGM clearly outperformed the conventional predictors
in prediction of actor’s attributes while the difference in predicting
links for Teenagers was inconclusive which could be expected for a
network of low density where the prediction problem is very difficult.

4 DISCUSSION
We have shown, that the etERGM is a viable predictor for social tem-
poral networks links and attributes. One of its core strengths is the
separate learning of its two component models, which makes it ap-
plicable to larger problems. While our approach is not directly scal-
able to the networks size of YouTube or Facebook, there are temporal
networks that could benefit from our approach.
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