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1. Proof of Proposition 2
Proof: With the definitions of h, Λ̃ Ỹ and Ω̃, it is easy to
see that the first two terms of the objective function in (9),
denoted as g(M), can be re-expressed as below

g(M) = ‖(X̃A−A)M + 1b>‖2F + ‖Ω ◦ (
√
ρAM −√ρY )‖2F

= ‖1N,L ◦
(

(X̃A−A)M + 1b> − 0N,L

)
‖2F +

‖Ω ◦ (
√
ρAM + 0b> −√ρY )‖2F

= ‖Ω̃ ◦ (Λ̃M + hb> − Ỹ )‖2F

Hence the minimization problem (9) is equivalent to the
following problem

min
M,b

‖Ω̃ ◦ (Λ̃M + hb> − Ỹ )‖2F + γ‖M‖tr

which is known to be equivalent to (11) by changing the
nuclear norm regularizer into an inequality constraint with a
proper τ value. �

2. Proof of Theorem 1
Proof: The proof is given by presenting the following two
lemmas. First, the relationship between the expected risk
and the empirical risk can be built by applying the following
lemma with Rademacher complexity.
Lemma 1 (Chiang, Hsieh, and Dhillon 2015, Lemma1) Let
L` be a Lipschitz constant for the loss function ` with re-
spect to its first argument, and assume it is bounded by B`.
Let R(FΘ) be the empirical Rademacher complexity of the
function class FΘ defined as:

R(FΘ) = Eσ

[
sup
f∈FΘ

1

m

m∑
a=1

σa`(f(ia, ja), Ỹiaja)

]
,

where σ = {σ1, · · · , σm} are independent uniform {±1}-
valued random variables. Then for a constant 0 < δ < 1,
with probability at least 1 − δ for all f ∈ FΘ we have the
following bound on the expected risk

R`(f) ≤ R̂`(f) + 2EΩ̌ [R(FΘ)] + B`

√
log 2

δ

2m

It is clear that the expected risk is determined by both the
empirical risk and the model complexity EΩ̌ [R(FΘ)]. The
model complexity is related to the input features and the
model structures, which are captured in {Λ̃,h,b}. It is also
related to the constraint over M , which limits the space of
the feasible function class. Assume ‖b‖2 is upper bounded
by Bb, i.e., ‖b‖2 ≤ Bb. Below we provide a bound on the
model complexity in terms of the properties of these related
components.

Lemma 2 Let κ = max

(
√
ρ,maxi

√
‖X̃i‖22 + 1

)
, q =

√
NBb, nmax = max(2N,L) and dmax = max(d+N,L).

Then the model complexity of the the function class FΘ is
upper bounded by:

EΩ̌ [R(FΘ)] ≤ 2τκL`

√
log 2dmax

m
+

min

2L`q
√

log 2nmax

m
,

√
9CL`B`

q(
√

2N +
√
L)

m


where C is a universal constant.

Based on our definitions of Λ̃ and h, it is easy to verify that
κ = maxi ‖Λ̃i‖2 and ‖hb>‖tr ≤ q. This Lemma can then be
derived from the Lemma 2 of (Chiang, Hsieh, and Dhillon
2015) with its right side feature matrix as an identity matrix.

With the closed-form solution for b in (12), an upper
bound for the Euclidean norm of b can be derived as fol-
lowing:

‖b‖2 =
1

N

∥∥∥M>(A− X̃A)>1
∥∥∥

2

=
1

N

∥∥∥[1>X̃,−11,N

]
M
∥∥∥

2

≤ 1

N

∥∥∥[1>X̃,−11,N

]∥∥∥
2
‖M‖sp

≤ ‖M‖tr
N

√
‖1>X̃‖22 +N

≤ τ
√∥∥(1>X̃)/N

∥∥2

2
+

1

N
= B∗b

Note if the feature matrix X̃ is already centered by its zero
mean vector (a typical preprocessing step), i.e., 1>X̃ = 0>,
then we will have

B∗b =τ

√∥∥(1>X̃)/N
∥∥2

2
+

1

N
=

τ√
N

and
‖hb>‖tr ≤ q =

√
NB∗b = τ.

By combining Lemma 1, Lemma 2 and the q value de-
rived above, we can get the upper bound for the expected
risk of an optimal solution in Theorem 1.

3. Sample Complexity
The bound in Theorem 1 suggests a sample complexity of
O(τ2 log nmax). Below we provide a derivation for the up-
per bound of τ .



First by replacing b with the closed-form solution (12),
we can re-express the empirical risk function in (11) as:

‖Ω̌ ◦ (Λ̌M − Ỹ )‖2F ,

where Λ̌ = [HX̃A−HA;
√
ρA] and H = IN − 1

N 11>.
Now we construct a feasible solution while producing

the constraint parameter τ simultaneously. Let Tµ(·) be a
thresholding operator with parameter µ such that Tµ(x) =

xI[x≥µ]. Given the SVD of Λ̌ such as Λ̌ =
∑
i σiuiv

>
i ,

where σi denotes the i-th largest singular value, we define
Λ̌µ =

∑
i σ1Tµ(σi/σ1)uiv

>
i . For µ ∈ (0, 1], we consider

setting τ = ‖M̂‖tr for a feasible solution M̂ :

M̂ = arg minM ‖Λ̌µM − Ỹ ‖2F = (Λ̌>µ Λ̌µ)−1Λ̌>µ Ỹ (1)

We then have the following lemma, which shows that the
nuclear norm of M̂ is upper bounded by O(

√
nmax):

Lemma 3 Given µ ∈ (0, 1], κ̌ = maxi ‖Λ̌i‖2 and λ =
mini ‖Λ̌i‖2

κ̌ . Let r̂y = rank(Ỹ ) = rank(Y ). Then with a uni-
versal constant C ′, we have

‖M̂‖tr ≤
√
ρr̂y
√
nmax

2C ′µ2λκ̌
(2)

Proof: Since

M̂ = (Λ̌>µ Λ̌µ)−1Λ̌>µ Ỹ

Then

‖M̂‖tr ≤ ‖M̂‖spr̂y = ‖(Λ̌>µ Λ̌µ)−1Λ̌>µ Ỹ ‖spr̂y
≤ ‖(Λ̌>µ Λ̌µ)−1‖sp‖Λ̌µ‖sp‖Ỹ ‖spr̂y

We use σx to denote the largest singular value of Λ̌µ, and
σxs to denote the smallest singular value of Λ̌µ; thus σxs ≥
µσx. Based on Lemma 5 of (Chiang, Hsieh, and Dhillon
2015), we then have σx ≥ C ′λκ̌

√
2N . Moreover, based

on the definition in (10) and equalities of matrix norms, we
have ‖Ỹ ‖sp = ‖Y ‖sp ≤

√
NL‖Y ‖max =

√
ρNL, where

the norm ‖Y ‖max = maxij |Yij |. Thus

‖M̂‖tr ≤
σx‖Ỹ ‖spr̂y

σ2
xs

≤ ‖Ỹ ‖spr̂y
µ2σx

≤ ‖Ỹ ‖spr̂y
µ2C ′λκ̌

√
2N

≤
√
ρNL r̂y

µ2C ′λκ̌
√

2N

≤
√
ρr̂y
√
nmax

2C ′µ2λκ̌

For low-rank Y , r̂y is much smaller than the size of Y , this
Lemma shows the ‖M̂‖tr is upper bounded by O(

√
nmax).

Since ‖M̂‖tr is obtained from the unconstrained problem
without considering the nuclear norm constraint, we can
choose O(

√
nmax) as an upper bound for τ .

4. Proof of Proposition 3
Proof: The gradient∇g(M) can be computed as

∇g(M) =2(X̃A−A)>H(X̃A−A)M

+ 2ρA
> (

Ω ◦ (AM − Y )
)

Let Ω̂ = [0d,L; Ω]. Then for any two matrices, M ∈
R(d+N)×L and M̂ ∈ R(d+N)×L, we have

‖∇g(M)−∇g(M̂)‖F

= ‖2Γ(M − M̂) + 2ρ
(

Ω̂ ◦ (M − M̂)
)
‖F

≤ 2‖Γ(M − M̂)‖F + 2ρ‖M − M̂‖F

= 2
∥∥∥IL ⊗ Γ Vec(M − M̂)

∥∥∥
2

+ 2ρ‖M − M̂‖F

≤ 2 ‖IL ⊗ Γ‖sp ‖Vec(M − M̂)‖2 + 2ρ‖M − M̂‖F
= 2σmax(Γ)‖M − M̂‖F + 2ρ‖M − M̂‖F

where ⊗ denotes the kronecker product of two matrices;
V ec(·) is the vectorization operator; and σmax(·) denotes the
largest singular value. It is then straightforward to show η∗

is the Lipschitz constant of∇g with

‖∇g(M)−∇g(M̂)‖F ≤ η∗‖M − M̂‖F , for any M,M̂.

This η∗ ensures the update in Algorithm 1 satisfies the
conditions of (Beck and Teboulle 2009)[Theorem 4.4], and
hence Algorithm 1 has a quadratic convergence rate. �
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