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Abstract

Using high-level representation of images, e.g., objects and discriminative patches,
for scene classification has recently drawn increasing attention. Compared with low-level
image features, the high-level features carry rich semantic information that is useful for
improving semantic scene classification. Nevertheless, acquiring scene level annotations
remains a bottleneck for automatic scene classification, although plenty of related auxil-
iary resources such as images with object tags are free available on the Internet. In this
paper we propose a simple and novel methodology that exploits the rich auxiliary image
and text resources to perform labelless automatic scene classification without acquiring
training images annotated with scene labels. The key of our methodology is to utilize
existing object detectors to represent images in terms of high-level objects and then au-
tomatically categorize them based on the semantic relatedness of the object names and
scene labels. We further incorporate a label propagation step to refine the automatic scene
categorization results. Experiments are conducted on three standard scene classification
datasets. The results show that our labelless semantic method can achieve reasonable
performance and alleviate considerable amount of scene annotation effort by comparing
with supervised scene categorization baselines.

1 Introduction
Scene classification has been a challenging problem in computer vision due to its highly flex-
ible structural layout over high-level visual entities. Traditional visual features [3, 15] only
capture low level color or texture information in the image and are not discriminative enough
to generate good classification results. The recent development of deep convolutional neu-
ral networks (CNN) that learn useful high-level features of images with a deep hierarchical
structure has led to state-of-the-art results in both general image classification [8] and scene
classification [26]. The CNN training however requires a huge amount of labeled data for
a large number of categories. Hence much effort on finding good features for scene classi-
fication in the literature has been focused on developing intermediate representations such
as patch-based representations [14, 23, 25], semantic-based representations [11, 21, 24], and
object-based representations [10]. In particular, the work in [21] uses semantic attributes
produced by crowd-sourcing to represent images and exploits the confidence of attributes
for scene classification. The method in [24] also uses manually specified semantic visual
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attributes as mid-level representations. It has been found that semantic attributes are much
more informative than low-level features for object description [5]. Objects, being semantic
entities at even higher level, are then expected to be informative for scene descriptions. The
Object Bank method developed in [10] exploits auxiliary resources, pre-trained object detec-
tors, to produce object-based image representations for scene classification, which demon-
strates good performance. These existing works however all require a sufficient amount of
labelled data with scene category annotations for training and hence induce significant an-
notation cost for scene classification.

Recently, the idea of semantic attributes has also been exploited to reduce annotation
effort for image classification through zero shot learning [1, 9]. These zero shot learning
works use shared semantic attributes to represent the labels of class categories, based on
which, intermediate attribute predictors trained on the labeled data can be used to perform
classification in new classes that are unseen in the training stage. Although many zero-shot
learning works require human defined semantic attributes, recent zero shot learning meth-
ods have proposed to explore auxiliary natural language processing (NLP) resources such as
WordNet [6, 13] and semantic word embeddings [7, 12, 13, 19] to build inter-class connec-
tions for cross-class information adaptation. Nevertheless, zero-shot learning still requires
sufficient amount of labeled data in a set of seen classes that are at the same level as the
unseen classes.

Motivated by these developments in the literature, in this paper we extend previous ef-
fort in reducing annotation effort into a broader vision by exploiting annotation resources at
different levels of the semantic output space. We propose a novel labelless learning method
for scene classification, which exploits auxiliary image resources such as pre-trained ob-
ject detectors and textual resources such as semantic word embeddings to build semantic
connections between images and scene categories and automatically classify scene images.
Different from previous works, the proposed approach does not require annotated data from
any scene classes and it can easily handle scene category expansions. Specifically, it first uses
auxiliary pre-trained object detectors to produce object-based high-level representations for
the images. Then it maps both images and scene labels into the same semantic space by ex-
pressing the object names and scene category labels using a common set of word embedding
vectors pre-trained from auxiliary large text corpora. Finally, automatic image classification
can be conducted by assigning each image into the scene class whose label has the largest
matching score with the image in the semantic vector space. We further exploit label prop-
agation to refine the automatic classification results. To our best knowledge, this is the first
work that pursues labelless scene categorization. We conducted experiments on three stan-
dard scene classification datasets. The experimental results show that the proposed approach
can alleviate considerable amount of scene annotation effort from supervised learning.

2 Related Work
This section provides a brief review on scene classification works that exploit intermediate
representations and image classification works that exploit semantic word embeddings.

2.1 Scene Classification with Intermediate Representations
Due to its highly flexible structural layout, scene images are difficult to classify based on
low-level visual features. Much work in the literature has proposed to address scene classifi-
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cation by learning intermediate or high-level representations such as semantic attributes [11,
21, 24], discriminative patches [14, 23] and objects [4, 10, 25]. The work in [24] uses manu-
ally specified semantic visual attributes as a mid-level representation. It trains a classifier for
each individual attribute and then uses the outputs of these classifiers as image descriptors
for classification. The work in [21] uses semantic attributes produced by crowd-sourcing to
represent images and exploits the confidence of the attributes for scene classification. The
work in [11] proposes a hierarchical model to automatically learn latent semantic represen-
tations of the images. In [23], the authors use a set of discriminative patches discovered in
an unsupervised way as mid-level visual representations, while the work in [14] proposes to
increase the discriminative power of image patches. The Object Bank method in [10] uses
pre-trained generic object detectors to produce object-based image representations for scene
classification. The work in [4] also uses objects as intermediate semantic representations. It
relates objects to scenes by prior contextual information computed from the frequencies of
objects in each scene in the labeled training data. More recently, some researchers make use
of the generic CNN features to harvest discriminative visual objects and parts, called Meta
Objects, for scene classification [25]. While these previous works successfully construct in-
termediate representations of scene images, they still need to have a sufficient amount of
labeled data with scene annotations to train their classification models. By contrast, our pro-
posed work builds connections between the intermediate representations and the target scene
labels by using auxiliary textual resources such as semantic word embeddings, and it does
not require any labeled data with scene annotations.

2.2 Semantic Word Embeddings
Learning semantic word embeddings for linguistic words and phrases from large text cor-
pus has been a recent advance in Natural Language Processing (NLP). Notable models for
this advance include the Skip-gram model [18] and the Continuous Bag of Words (CBoW)
model [16]. Both models use neural networks to learn real valued vector representations for
the linguistic words (or phrases). But CBoW performs learning by predicting a word given
its context while Skip-gram conducts learning by predicting the context given a word. The
word embedding vectors induced by these models can successfully capture the underlying
semantic meanings of the words from the contextual information of the text corpus.

Many previous works have exploited semantic word embeddings to build inter-class se-
mantic connections and address image classification in the context of zero shot learning
[2, 7, 12, 13, 19]. The work in [2] evaluates both human specified supervised semantic
attributes and unsupervised word embedding vectors for fine-grained classification, and it
shows the unsupervised semantic embeddings achieve compelling or even superior results
than the supervised attributes. In [7], the authors proposed a deep visual-semantic model to
incorporate both word embeddings and deep image features to improve image classification
and zero-shot prediction performance. In [12], the authors used word embeddings to build
inter-class relationship matrix to perform max-margin zero-shot learning. In [13], the authors
proposed a hierarchical semantic embedding model that exploits the WordNet hierarchy to
improve label embedding and image embedding for zero-shot image tagging. The work in
[19] proposes to train classifiers on labeled classes, and then maps a test image into the se-
mantic word embedding space by taking a weighted convex combination of the seen classes’
embedding vectors with the classifier outputs. It assigns the test image to the novel class that
has the largest similarity value with the image in the embedding space. Different from all
these works, our proposed work in this paper exploits word embeddings to build semantic
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Figure 1: An illustration example of the semantic matching process for the proposed method.
First, a set of objects {oi} are detected from image I, each with a corresponding normalized
detection probability θi(I). Next, the semantic embedding vector ϕ(oi) for each object oi
and the semantic embedding vector ϕ(c) for each scene category c are computed from the
auxiliary NLP word embeddings. The semantic embedding vector ψ(I) for image I is then
computed as a probability weighted sum of the object semantic embedding vectors. Finally,
the similarity-based matching scores between ψ(I) and each ϕ(c) are computed and the
image can be assigned into the scene category (‘buffet’ in this example) that has the largest
matching score (0.48 in this example).

connections between the high-level image descriptors, objects, and the scene class labels.
We do not transfer information from any labeled scene classes to novel classes, but address
the overall scene classification problem in an unsupervised manner at the scene level.

3 Proposed Approach

In this section we present a novel labelless scene classification method that exploits auxiliary
image and textual resources to automatically build semantic connections between the images
and the scene categories without acquiring images annotated with scene labels.

3.1 Labelless Semantic Scene Categorization

Given a set of D images {I1, · · · ,ID} and a set of N scene category labels {c1, · · · ,cN}, we
aim to automatically classify each image Ii into one of the N scene categories. The main
idea is to first represent the images in terms of high-level visual concepts, objects, and then
exploit the semantic relatedness between the abstractive scene concepts and the objects that
visually express scene concepts to automatically categorize the images into scene classes.
The process of our methodology is illustrated in Figure 1. Below we will present it in detail.

3.1.1 High-level Object-based Image Representation

Natural scenes are abstractive high-level semantic concepts. Most scenes are expressed as a
collections of high-level visual entities, such as objects, in variable layouts. It has been shown
in the literature that high-level semantic representations such as objects are very useful for
scene classification [10]. Meanwhile there are rich image resources with object labels such as
ImageNet available on the Internet to be used for training generic object detectors [20, 22].
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We hence propose to exploit the generic object detectors pre-trained on the auxiliary image
resources to produce high-level object-based representations for the target unlabeled images.

Let θ(·) denote the object detection function produced by the object detectors on a set
of m objects with object labels {o1,o2, ...,om|ok ∈ W,k = 1,2, ...,m}. Given an image I,
the output of the object detection will be a probabilistic vector over the m objects such
that θ(I) = [θ1(I), . . . ,θi(I), · · · ,θm(I)], where each value θi(I) indicates how likely the
image I contains the object oi. This vector θ(I) hence forms the object-based high-level
representation of image I. To reduce the impact of noisy object detections, we choose to
only consider the top T detected objects for each image (we used T =10 in experiments),
while setting the remaining smaller detection probabilities, {θi(I)}, as zeros. We further
normalize the vector θ(I) to sum to 1, in order to represent each image at the same quantity
level. For example, in Figure 1, the θ(I) function returns a vector of probability values [0.44,
0.32, 0.05, · · · , 0.03] over a set of objects {‘pizza’, ‘trifle’, ‘bagle’, · · · , ‘plate’}.

3.1.2 Semantic Embeddings of High-level Visual Concepts

Computer vision tasks have natural connections with natural language processing (NLP)
since each high-level visual concept, such as an object name or a scene label, is described
using the key linguistic elements of NLP, words or phrases. Recent advances in NLP tech-
niques have allowed the semantic meanings of linguistic words and phrases to be learned
in the form of distributed embedding vectors from the contextual information of large text
corpora without human supervision [18].

The availability of the semantic word embedding vectors from NLP field provides a nat-
ural way of expressing the high-level visual concepts, such as object names and scene cate-
gory labels, in the same semantic embedding space. Let φ(·) denote the word/phrase embed-
ding function produced by NLP techniques, which maps a word/phrase into a d-dimensional
embedding vector space: φ :Wp 7→ Rd . However, the domain Wp usually contains all sin-
gle words but only a subset of phrases which may not cover all the phrases in our object
names or scene labels. Hence below we define a general word/phrase embedding function
ϕ :W 7→Rd based on φ(·), which maps any input word/phrase, e.g., an object name oi, into
a d-dimensional embedding vector space:

ϕ(oi) =

{
φ(oi) if oi ∈Wp

∑w∈oi φ(w) otherwise (1)

where w denotes a single word. For example, for an object name ‘dining table’/∈Wp, we will
have ϕ(‘dining table’) = φ(‘dining’)+φ(‘table’); in Figure 1, the embedding vectors of the
object names, {‘pizza’, ‘trifle’, · · · , ‘plate’}, are demonstrated in the column under "ϕ(oi)".

Sometimes we have more than one phrases to describe an object; e.g., ‘trash can’,
‘garbage can’ and ‘dustbin’ all refer to the same object. In this case, we propose to use
the average of embedding vectors of the phrases to represent the object:

ϕ(oi) =
1
Ki

∑
Ki
k=1ϕ(o(k)i ) (2)

where {o(k)i ,k = 1,2, ...,Ki} refer to all the Ki phrases that describe the i-th object.
Similarly we can compute the embedding vectors of the scene category labels, {c1, ...,cN},

in the same semantic embedding space using the same embedding function ϕ(·) defined
above. In Figure 1, the embedding vectors of the scene labels, {‘buffet’, ‘bathroom’, ‘garage’,
· · · , ‘office’}, are demonstrated in the column under “ϕ(c)".
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3.1.3 Scene Classification with Semantic Matching

The visual relationships of high-level visual concepts are typically consistent with their se-
mantic relationships since images and text descriptions can be two parallel ways of recording
the same observations of life and nature. For example, in an image of a ‘bedroom’ scene, it is
most likely to see objects such as ‘bed’, ‘lamp’ and ‘shade curtain’, while in an article talking
about bedroom it is also very likely to see these object phrases. In addition, the word/phrase
embedding vectors produced by NLP tools can carry semantic meanings induced from natu-
ral text resources. They often demonstrate interesting properties in expressing various seman-
tic relationships. For example, it has been shown that ϕ(‘Paris’)- ϕ(‘France’) + ϕ(‘Italy’)
result in a similar embedding vector to ϕ(‘Rome’) [17]. Given the consistent visual and se-
mantic relationships and the availability of semantic word/phrase embedding vectors, the
high-level object-based representation of images creates a great opportunity for automati-
cally building connections between the images and scene labels in the semantic embedding
vector space. We are hence enlightened to develop a labelless image classification approach
that performs scene classification by conducting automatic semantic matching between the
images and the scene labels in the semantic embedding space.

We view the semantic representation of an image as the combination of the semantic
embedding vectors for all the objects it contains. Since our object detection function outputs
probabilities for the appearance of the considered objects in a given image, we compute
the semantic embedding vector of an image I by taking a weighted sum of the embedding
vectors for all the objects:

ψ(I) =
m

∑
i=1

θi(I)ϕ(oi) (3)

This ψ(·) function maps an image into the same semantic embedding space as the object and
scene category labels. We can then compute the matching score between an image I and a
scene category c as the cosine similarity score between their semantic embedding vectors:

s(I,c) = ψ(I)>ϕ(c)
‖ψ(I)‖ ‖ϕ(c)‖

(4)

where ‖ · ‖ denotes the Euclidean norm. Note the usage of cosine similarity function can
eliminate normalization issues over the image and scene category representation vectors. The
matching scores of the i-th image Ii with all the scene categories then form a row vector:

Y (i, :) = [s(Ii,c1),s(Ii,c2), · · · ,s(Ii,cN)] (5)

According to our assumption that visual and semantic relationships are consistent, we
expect each image will have the largest matching score with its underlying scene cate-
gory. Hence we can automatically classify the image Ii by assigning it into the scene cat-
egory cyi that has the highest matching score among all the N scene categories; that is,
yi = argmax j Y (i, j). For the example demonstrated in Figure 1, the image is successfully
classified into the scene category with label ‘buffet’ that has the highest matching score 0.48.

3.2 Classification Refinement with Label Propagation
The labelless scene classification method proposed above can output unreliable matching
scores for images on which the object detection function has poor detection results. We hence
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propose an additional label propagation step on a k-NN graph built over all the D images
based on the extracted CNN features to refine the semantic matching results Y . Moreover,
since we only want to propagate the most confident predictions through the graph, we further
prepare Y for propagation by only keeping the top-δ fraction of scores in each class (the
columns of Y ) and setting other values to zeros. The label propagation is expected to exploit
the intrinsic manifold structure of the images and propagate confident predictions to improve
the ultimate scene classification performance.

To build a k-NN graph, we first compute the squared Euclidean distance between each
pair of images, such that d(xi,x j) = ‖xi− x j‖2, where xi (or x j) denotes the CNN feature
vector of image Ii (or I j). Then we construct the k-NN graph by computing the RBF kernel
based affinity matrix W in the following way:

Wi j =

{
exp
(
−d(xi,x j)

2σ2

)
, if i∈KNN( j) or j∈KNN(i)

0, otherwise
(6)

where KNN(i) denotes the k-nearest neighbors of the i-th image. After computing the nor-
malized Laplacian matrix L from W such as L = Q−1/2WQ−1/2 where Q is a diagonal matrix
with Qii = ∑ j Wi j, we can take the standard label propagation technique in [27] to perform
label propagation, which provides the following refined prediction score matrix:

Y ∗ = (I−αL)−1×Y (7)

where I is an identity matrix of size D and α ∈ [0,1] is a regularization trade-off parameter.
Same as before, in each row of Y ∗, the class with the largest score is selected to be the
predicted class.

4 Experiments
We conducted experiments on three standard scene classification datasets, MIT-Indoor, 15-
Scene and SUN datasets. The MIT-Indoor database contains 67 indoor scene categories and
the number of images varies across categories, with at least 100 images per category. We used
a subset of 30 classes with some common scene labels such as ‘game room’, ‘kitchen’, ‘bath-
room’, ‘office’, etc.. The 15-Scene dataset contains images in 15 natural scene categories,
including ‘bedroom’, ‘highway’, ‘kitchen’ and ‘mountain’. Each of its classes contains more
than 200 grayscale images. The SUN dataset contains a large number of categories and im-
ages. We chose a subset of 50 categories to use by dropping categories that are semantically
close; for example, ‘bookstore’ and ‘library’ are semantically close to each other and we
picked only one of them. Each of these 50 categories contains at least 100 images and in
total we have 15,812 images.

4.1 Free Auxiliary Resources
Two types of free auxiliary resources exploited in this work are object detectors and NLP
tools that produce word embedding vectors. We used an existing state-of-the-art object pre-
diction/detection technique, OverFeat [22], to produce object detectors. The OverFeat tool
is pre-trained on ImageNet with 1000 classes. We dropped the classes that can potentially
overlap with our scene categories and used the remaining classes that focused on objects.

Citation
Citation
{Zhou, Bousquet, Lal, Weston, and Sch{ö}lkopf} 2004

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013



8 YE, GUO: LABELLESS SCENE CLASSIFICATION

Table 1: Performance of the proposed approach in terms of the three evaluation metrics.

mcAccu avgAccu mAUC

15-Scene LSM 34.18 91.22 78.30
LSM+LP 53.36 93.78 89.87

MIT-Indoor LSM 34.62 95.64 77.58
LSM+LP 42.05 96.14 89.28

SUN LSM 30.41 97.22 77.85
LSM+LP 34.55 97.38 84.69

For producing the semantic embeddings used in our approach, we used one most popular
NLP model for learning word embeddings, the Skip-gram model [18]. It learns word repre-
sentation vectors by predicting the context words (or phrases) in a sentence or a document.
The model is trained on a large document collection, Google News dataset, and its published
results contain 300-dim embedding vectors for 3 million words and phrases.

4.2 Labelless Scene Classification Results

We first investigated the classification performance of the proposed methodology. We com-
pared two variants of the proposed methodology, LSM and LSM+LP, where LSM+LP de-
notes the proposed full approach with label propagation refinement and LSM denotes the
variant with only the semantic matching procedure. We conducted the comparison to inves-
tigate the effectiveness of the simple semantic matching procedure and the label propagation
refinement procedure separately. For the label propagation step, we used k = 30 for the k-NN
graph construction, and set the radius of the RBF kernel, σ2, as the average of the squared
distances of the edges in the k-NN graph. We used δ = 0.2 to keep the top 20% of the confi-
dent matching scores in each class as the initial matrix for propagation, and used α = 0.5 to
give the initial matrix sufficient weights while allowing modifications from the propagation.

Our methodology is entirely unsupervised at the scene label level. Both LSM and LSM+LP
automatically predict the scene labels for all the images in each dataset. We used three eval-
uation metrics, multi-class accuracy (mcAccu), average of per-class accuracy (avgAccu),
and mean of per-class AUC (Area Under ROC-curve) (mAUC), to evaluate the classifica-
tion performance. The results are reported in Table 1. We can see the results are reasonably
good. The average per-class accuracy of both variants are over 95% on MIT-Indoor and SUN
and over 90% on 15-Scene. LSM achieved above 77% of mAUC on all three datasets and
the full approach LSM+LP further increases the performance to over 89% on 15-Scene and
MIT-Indoor and to over 84% on SUN. In terms of multi-class accuracy, LSM achieved a
performance of over 30%, while LSM+LP boosted the performance to 53.36%, 42.05% and
34.55% on 15-Scene, MIT-Indoor and SUN respectively. Considering there are 15, 30 and
50 classes in these three datasets respectively, these multi-class accuracy values are reason-
ably good; without scene annotations, the expected naive random guess results in terms of
multi-class accuracy will be around 6.7% on 15-Scene, 3.3% on MIT-Indoor and 2.0% on
SUN. By comparing the results of LSM and LSM+LP, we can see that the label propagation
refinement step is very helpful, and it induces notable large performance increases in terms
of multi-class accuracy and mAUC on the three datasets.
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Figure 2: Classification performance v.s. annotation effort in terms of the number of labeled
training instances. The proposed LSM+LP does not use the scene annotation information.

4.3 Alleviation of the Annotation Effort

We have also conducted experiments to compare our proposed full method LSM+LP with
two supervised baselines, HOG+KNN and CNN+KNN. Both HOG+KNN and CNN+KNN
use the K-Nearest Neighbor method to perform supervised scene classification, while HOG+
KNN uses the HOG features [3] to represent each image and CNN+KNN uses the advanced
CNN features [22]. We used K = 5 in the experiments. Since the proposed methodology does
not require any labeled data with scene annotations, it is not fair to compare its classification
performance with the supervised classifiers which have to be trained on labeled images. In-
stead we are interested to find out how many labeled training images are required to increase
the performance of the supervised baselines to the level of our proposed labelless method,
which can be viewed as the amount of annotation effort alleviated by our approach.

On each dataset, we randomly split the data into 80% training/20% test and then ran
the supervised baselines with different numbers of labeled images from the training set. We
repeated the process five times and collected five sets of results. The unsupervised method,
LSM+LP, is also evaluated on the same set of test images. We tested the following sets of la-
beled training sizes, [15,30,45, · · · ,300], [30,60,90, · · · ,600], and [50,100,150, · · · ,1000],
on 15-Scene, MIT-Indoor and SUN datasets respectively. The average results are reported
in Figure 2. We can see our unsupervised approach consistently outperforms the supervised
HOG+KNN method, while CNN+KNN takes considerable number of labeled instances to
reach the performance level of our unsupervised method. In terms of multi-class accuracy,
CNN+KNN uses about 120, 600 and 270 labeled training images on the three datasets respec-
tively to reach the performance level of LSM+LP. In terms of average per-class accuracy,
CNN+KNN uses 165 and 600 labeled training images on 15-Scene and MIT-Indoor respec-
tively to reach the performance level of LSM+LP, and fails to reach the level of LSM+LP on
SUN with 1000 labeled images. In terms of mAUC, CNN+KNN uses 150 labeled training
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images on 15-Scene to reach the level of LSM+LP, while failing to beat LSM+LP with 600
and 1000 labeled images on MIT-Indoor and SUN. These results show the proposed labelless
methodology can alleviate considerable amount of annotation effort at the scene level.

5 Conclusion
In this paper we have developed a novel labelless method for scene classification, which does
not require labeled data from any scene classes. The proposed approach uses auxiliary object
detectors to produce object-based high-level image representations. Then it exploits auxil-
iary word embeddings to map both images and scene labels into embedding vectors in the
same semantic embedding space, based on the object names detected from the images and
the scene label phrases. Automatic scene classification is conducted by semantic matching,
which assigns each image into the scene class whose label embedding vector has the largest
matching score with the embedding vector of the image. We further exploited label propaga-
tion to refine the automatic scene classification results. We conducted experiments on three
scene classification datasets. The experimental results show that the proposed method can
achieve reasonable performance and alleviate considerable scene annotation effort.
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