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Abstract

This paper proposes to learn language-
independent word representations to ad-
dress cross-lingual dependency parsing,
which aims to predict the dependency
parsing trees for sentences in the target
language by training a dependency parser
with labeled sentences from a source lan-
guage. We first combine all sentences
from both languages to induce real-valued
distributed representation of words under
a deep neural network architecture, which
is expected to capture semantic similari-
ties of words not only within the same lan-
guage but also across different languages.
We then use the induced interlingual word
representation as augmenting features to
train a delexicalized dependency parser on
labeled sentences in the source language
and apply it to the target sentences. To in-
vestigate the effectiveness of the proposed
technique, extensive experiments are con-
ducted on cross-lingual dependency pars-
ing tasks with nine different languages.
The experimental results demonstrate the
superior cross-lingual generalizability of
the word representation induced by the
proposed approach, comparing to alterna-
tive comparison methods.

Introduction

al., 2012; McDonald et al., 2011; Zhao et al.,
2009). Cross-lingual dependency parsing is pop-
ularly studied in natural language processing area
as it can greatly reduce the expensive manual an-
notation effort in the target language by exploit-
ing the dependency annotations from a source lan-
guage (Durrettetal., 2012; McDonald et al., 2011;
Tackstbm et al., 2012).

One fundamental challenge of cross-lingual de-
pendency parsing stems from the word-level rep-
resentation divergence across languages. Since
sentences in different languages are expressed
using different vocabularies, if we train a de-
pendency parser on the word-level features of
sentences from a source language, it will fail
to parse the sentences in a different target lan-
guage. A variety of work in the literature has at-
tempted to bridge the word-level representation di-
vergence across languages. One intuitive method
delexicalizes the dependency parser by replac-
ing the language-specific word-level features with
language-independent features such as universal
part-of-speech tags (Petrov et al., 2012). With the
universal POS tag features, this method provides
a possible way to transfer dependency parsing in-
formation from the source language to the target
language and has demonstrated some good empir-
ical results (McDonald et al., 2011). However, the
number of universal POS tags is small, which lim-
its their discriminative capacity as input features
for dependency parsing. A few other works hence

With the rapid development of linguistic resourcesPropose to improve the delexicalized system by
and tools in multiple languages, it is very im- learning more effective cross-lingual features such
portant to develop cross-lingual natural languagés bilingual word clusters @ckstom et al., 2012)
processing (NLP) systems. Cross-lingual depenand other interlingual representations (Durrett et
dency parsing is the task of inferring dependenc;ﬂ'-, 2012).

trees for observed sentences in a target languageln this paper, we propose to address cross-
where there are few or no labeled training sendingual dependency parsing by learning distributed
tences by using a dependency parser trained anterlingual word representations using a deep
a large amount of sentences with annotated dereural network architecture. We first combine
pendency trees in a source language (Durrett efll the sentences from two language domains and



build cross language word connections based oar WordNet (Khapra et al., 2010), or boosting pro-
Wikitionary, which works as a free bilingual dic- jection performance by heuristically modifying or
tionary. Then by exploiting a deep learning archi-correcting the projected annotations (Hwa et al.,
tecture, we learn real-valued dense feature vectoi2005; Kim et al., 2010). Some work has also
for the words in the given sentences as the highproposed to project the discrete dependency arc
level interlingual representations, which captureinstances instead of treebank as the training set
semantic similarities across languages. Finally, wéLiu et al., 2013). Moreover, besides cross-lingual
use the induced distributed word representation adependency parsing, cross-lingual annotation pro-
augmenting features to train a delexicalized dejection methods have also demonstrated success
pendency parser on the annotated sentences in thie various other sequence labeling tasks includ-
source language and applied it on the sentences ing POS tagging (Das and Petrov, 2011; Yarowsky
the target language. In order to evaluate the proand Ngai, 2001), relation extraction (Kim et al.,
posed cross-lingual learning technique, we con2012), named entity recognition (Kim et al., 2010;
duct extensive experiments on eight cross-linguaKim and Lee, 2012), constituent syntax parsing
dependency parsing tasks with nine different lan{Jiang et al., 2011), and word sense disambigua-
guages. The experimental results demonstrate thion (Khapra et al., 2010).

efficacy of the proposed approach in transferring

q g I ® Multilingual model learning methods train
ependency parsers across fanguages, Compa“@%ss—lingual dependency parsers with parameter
to other methods.

) ] ) constraints obtained from parallel data (Liu et al.,
The remainder of the paper is organized as 0l 3. Ganchev et al., 2009) or linguistic knowl-
lows. Section 2 reviews related work. Sectionedges (Naseem et al., 2010; Naseem et al., 2012).
3 describes the_main approagh of cross-linguaAmong these methods, some proposed to train
word representathn learning with deep negral ngté joint dependency parsing system with parame-
works and cross-lingual dependency parsing Withe s shared across the dependency parsing models
induced interlingual features. Section 4 presents individual languages (Liu et al., 2013). Other

the empirical study on eight cross language depenyq s ysed posterior regularization techniques to
dency parsing tasks. We then conclude the papef,code the linguistic constraints in learning de-

in Section 5. pendency parsing models (Ganchev et al., 2009;
Naseem et al., 2010; Naseem et al., 2012). The
linguistic constraints may either come from man-

Previous works developed in the literature have'@lly constructed universal dependency parsing
tackled cross-lingual dependency parsing by us|[ules (Naseem et al., 2010) or manually specified

ing cross-lingual annotation projection methodsYPological features (Naseem et al., 2012), or be
learned from parallel sentences (Ganchev et al.,

multilingual model learning methods, and cross- : : _
2009). Besides cross-lingual dependency parsing,

lingual representation learning methods. il : del | ; thods h :
Cross-lingual annotation projection methods" o1 ingual modet learning metnods have a'so
hieved good empirical results for other multilin-

use parallel sentences to project the annotation%ﬁaI NLP tasks, including named entity recogni
from the source language side to the target lan? ’ )
guag 9 n (Burkett et al., 2010; Che et al., 2013; Wang

guage side and then train dependency parsers 559

the target data with projected annotations (Hwaand Manning, 2014), syntactic parsing (Burkett

et al. 2005 Liu et al. 2013: Smith and Eis- et al., 2010), semantic role labeling (Zhuang and

ner, 2009; Zhao et al., 2009). For cross-lingualzong’ 2010; Kozhevnikov and Titov, 2012), and

annotation projection methods, both the Wordword sense disambiguation (Guo and Diab, 2010).

alignment training step and the annotation pro- Cross-lingual representation learning methods
jection step can introduce errors or noise. Thusnduce language-independent features to bridge
much work developed in the literature has fo-the cross-lingual difference in the original word-
cused on designing robust projection algorithmdevel representation space and build connections
such as graph-based projection with label propacross different languages. They train a depen-
agations (Das and Petrov, 2011), improving pro-dency parser in the induced representation space
jection performance by using auxiliary resourceshy exploiting labeled data from the source lan-
such as Wikipedia metadata (Kim and Lee, 2012guage and apply it in the target language (Dur-

2 Reated Work



rett et al., 2012; &ckstdm et al., 2012; Zhang employed a deep learning framework for jointly
et al.,, 2012). A variety of auxiliary resources multi-task learning and empirically evaluated it
have been used to induce interlingual features, inwith four NLP tasks, including part-of-speech tag-
cluding bilingual lexicon (Durrett et al.,, 2012), ging, chunking, named entity recognition, and se-
and unlabeled parallel sentencea¢kstom etal., mantic role labeling. Henderson (2004) proposed
2013). Based on different learning mechanismgliscriminative training methods for learning a neu-
(whether or not using labeled data) for induc-ral network statistical parser. Titov and Hender-
ing language-independent features, cross-lingualon (2010) extended the incremental sigmoid Be-
representation learning methods can be catdief networks (Titov and Henderson, 2007) to a
gorized into unsupervised representation learngenerative latent variable model for dependency
ing (Tackstbm et al., 2013) and supervised parsing. Turian et al. (2010) employed neural net-
representation learning (Durrett et al.,, 2012).works to induce word representations for sequence
The language-independent features include bilinkabeling tasks such as named entity recognition.
gual word clusters (ackstbm et al., 2012), _ )
language-independent projection features (Durre®  Cross-Lingual Dependency Parsing

etal., 2012), and automatically induced language- With Word Representation L earning

iqdependent_POS tags (Zhang et aI._, 20_12)' B_el'n this work, we aim to tackle cross-lingual depen-
sides cross-lingual dependency parsing, in the I'taency parsing by learing language-independent

erature cross-lingual representatipn 'ea_mi”_g meuPﬂistributed word representations with deep neural
ods have also demonstrated efficacy in c}I'ﬁerenf'letworks. We first build connections across lan-

NLP applications such as cross language name, ages using free bilingual dictionaries. Then we

entity Irecognltlon ("acks_toml etl il"|,201_|2__) and introduce the deep neural network framework for
cross language semantic role labeling (Titov an%ross—lingual word representation learning and de-

Klementiev, 2012). Our work shares similarity scribe how to employ the induced dense word em-

with these cross-I!nguaI representatl'on Iearnlngbeddings for cross-lingual dependency parsing.
methods on inducing new language-independent

features, but differs from them in that we learn3.1 Building Cross L anguage Connections

crosls-lmgual \évo(rj(ili_embﬁddmgs. Thouglh mglt_'“nr']To induce cross-lingual word representations, we
gual word embeddings have been employe N @/ st need to build connections between the source
literature, they are developed for other NLP taSksand target languages. In this work, we produce
such as cross-lingual sentiment analysis (Klemenéuch connections by finding cross-lingual word

tiev Iet al., 2012), and mﬁchine ;raan_slatioln (Zoupairs using the Wikitionary; which works as free
et al,, 2013). Moreover, the method in (K emen'bilingual dictionaries between language pairs.

tiev et al., 2012) requires parallel sentences with Specifically, we first constructed a source lan-

pbserved word-level fallgnments, and the methq%uage dictionary with all words that appeared in
in (Zou et al., 2013)'f|rst learns Ianguage-spemflc[he sentences from the source language domain
word embeddings in each Ianguage separatelgnd translate these words to the target language
and then transforms representations from one Iar]]sing the Wikitionary. Then we filtered the pro-
guage to another language with machine tra‘nséluced word-to-word translations by dropping the

lation alignments, while we jointly learn cross- o \here either the same source language word
lingual word embeddings in the two languages onhas multiple different word translations in the tar-

only exploiting a small set of bilingual word pairs. get language or the same target language word

. . corresponds to multiple different source language
From the perspective of applying deep networks :
. . words. We further dropped the word pairs where
in natural language processing systems, there ar

a number of works in the literature (Collobert andtﬁe translated word in the target language does not

Weston, 2008; Collobert et al., 2011; Hendersonaploear in th_e given sentences .in the target lan-
2004; Socher et al., 2011; Titov and Hendersonguage domain. After the processing, we have a set

2010: Turian et al., 2010). Socher et al. (2011) ap?! One-to-one bilingual word pairs to build con-
. . nections between the two language domains. Fi-
plied recursive autoencoders to address sentence-

level sentiment classification problems. Collobertna”y’ we built a unified bilingual vocabulary

and Weston (2008) and Collobert et al. (2011) ‘http://en.wikitionary.org



[ P — @ | fixed window sizec constructed from the given

sentences in the two language domains as posi-

i tive samples and construct the negative samples by
[ Higden Layer replacing the middle word of each positive sub-
( ]J sentence with a random word froim. We then
T train a deep neural network for this two-class clas-
Tt ey sification problem, while simultaneously learning
Hidden Layer the latent embedding matrik.
( : : ) The deep neural network architecture is given
T in Figure 1. The bottom layer of the deep archi-
(" Lookup Table ™ tecture is the input layer, which takes a sequence
concat of word tokensx = w1, ws, . . ., w,, With a fixed
D U D D window sizec as the input instance. Then we map
R . e . . .
each wordw; in this sequence to an embedding
- =/ vector R(w;) by treating the bilingual embedding
: i matrix R as a look-up table. The embedding vec-
nput Layer a sequence of words )
[ X Wy, Wo, Wi, .o, W tors of the sequence of wordswill be concate-

nated into a long vectaR(x) € R such that

Figure 1: The architecture of the deep neural net-
work for learning cross-lingual word representa-

_tions. Each Worc_wi frpm the training sa.mplx R(x) will then be used as input for the hidden

is mapped to an mterllngua_ll representation VeCtofayer above it. The deep neural network has mul-

R(w;) through the embedding matri. tiple hidden layers. The first hidden layer applies
a nonlinear hyperbolic tangent activation function

_ over the linear transformation of its input vector
with words from all sentences of the two IanguageR(x) such that

domains. For each one-to-one bilingual word pair

we constructed, we assume the two words have Hi(x) = tanh (W) x R(x) + by) )
equivalent semantic meaning and map them to the

same entry i’. Next we will learn a distributed \yhere 77, ¢ RM** is the weight parameter
vector representation_ for each entry of the bilin-matrix b, € R™ is the bias parameter vector,
gual vocabularyV using deep neural networks. Hi(x) € RM is the output vector, andl; is the
By sharing the same representation vectors, thgymber of hidden units in the first hidden layer.
constructed bilingual word pairs will serve as theSimiIarIy, each of the other hidden layers takes the
bridge across languages. previous layer’s output as its input and performs
a nonlinear transformation to produce an output
vector. For example, for theth hidden layer, we
usedH,;_;(x) as its input and?;(x) as its output
Given the constructed bilingual vocabuldfywith ~ such that

v entries, we will learn a latent word embedding

matrix R € R¥*¥ over the sentences in the two H;i(x) = tanh (W; x Hi—1(x) + b;)  (3)
language domains by using a deep neural network

model. This embedding matrix will map eachWhereW; € R"*"i-1is the weight parameter ma-
wordw in the vocabulary/ into a real valued rep- trix and b; is the bias parameter vector for the
resentation vectoR(w) with lengthk. For each th hidden layer},; denotes the number of hidden
bilingual pair of words that are mapped into theunits of thei-th hidden layer.

same entry of//, they will be mapped into the ~ Givent hidden layers, the output representation
same vector inR as well. Following the strat- of the last layer will then be used to generate a
egy of (Collobert et al., 2011), we construct afinal score value for the prediction task, such that
simple two-class classification problem over the

given sentences. We use the sub-sentences with s(x) = 0 x Hi(x) +u (4)

R(x) = [R(w1); R(wa); ... R(we)]. (1)

3.2 Interlingual Word Representation
L earning with Deep Neural Networks



whered € R" is the weight parameter vector and tag features and the learned distributed features.

u is the bias parameter for the output layer. and apply it to perform dependency parsing on the
In summary, the model parameters of the deegentences in the target language domain.

neural network architecture include the look-up ta-

ble R, the parameter§lV;, b;}t_, for the hidden 4 Experiments

layers, and the output layer parametgtsu,). We empirically evaluated the proposed cross-

3.3 TheTraining Procedure lingual word representation learning for cross-
lingual dependency parsing. In this section, we

The model parameters of the deep network archi )
present the experimental setup and the results.

tecture are learned by training a two-class classifi
cat|on_ model over the the constructed positive ang} 1 pataset

negative samples. Leb = {x;,%;}, denote

the constructed training set, whexgis a positive We used the dataset from the CoNLL shared task
sample and; is a negative sample constructed by(BuchhoIz and Marsi, 2006; Niv_re etal., 2007) for
replacing the middle word of; with a random cross-lingual dependency parsing. We conducted
word from V. It is desirable for the model to pro- €Xxperiments with the following nine languages:
duce an output scoedx;) thatis much larger than English (EN), Danish (DA), German (DE), Greek
the scores(x;) for each pair of training instances. (EL), Spanish (ES), Italian (IT), Dutch (NL), Por-
Thus we perform training to maximize the separafuguese (PT) and Swedish (SV). For each lan-
tion margins between the pairs of scores over posJuage; there is a separate training set and a test set.
itive and negative samples under a hinge loss; thaf/é used English, which usually has more labeled

is we minimize the following training loss resources, as the source language, while treat-
ing the others as target languages. We thus con-

1 X structed eight cross-lingual dependency parsing
J(D) = > max(0,1—s(x;) + s(X:)) (5) tasks (EN2DA, EN2DE, EN2EL, EN2ES, EN2IT,
i=1 EN2NL, EN2PT, EN2SV), one for each of the
We perform a random initialization over the €ight target languages. For example, the task
look-up table and weight model parameters, andEN2DAmeans that we used Danish (DA) as the
setall the bias model parameters to zeros. Then wi@rget language while usingnglish (EN)as the
use a stochastic gradient descent (Bottou, 199180urce language. For each cross language de-

algorithm to perform optimization. pendency parsing task, we first performed repre-
sentation learning and then conducted dependency
3.4 Cross-Lingual Dependency Parsing parsing training and test.

The training of deep network model above will In this dataset, each sentence is labeled with
produce a word embedding mattdkfor all words ~ gold standard part-of-speech tags. To produce
in the two language domains. Moreover, by hav-delexicalized cross-lingual dependency parsers,
ing each translated bilingual pair of words shar-we mapped these language-specific part-of-speech
ing the same representation vector finin the tags into twelve universal POS tags (Petrov et al.,
training process, the embedding matiixis ex- 2012): ADJ (adjectives), ADP (prepositions or
pected to capture consistent and comparable s@ostpositions), ADV (adverbs), CONJ (conjunc-
mantic meanings across languages, and providet®ns), DET (determiners), NOUN (nouns), NUM
language-independent and distributed representfumerals), PRON (pronouns), PRT (particles),
tion for each word in the bilingual dictionafy. PUNC (punctuation marks), VERB (verbs) and X
GivenR, for each sentence = wy, wo, ..., w, (forothers).
from the two language domains, we retrieved the ) .
representation vectoR(w;) for each worduw;. 4.2 Representation L earning
Moreover, we further delexicalized the sentencd-or each language pair, we produced a set of one-
by replacing the sequence of language-specifito-one bilingual word pairs using Wikitionary to
words with a sequence of universal POS tag$uild cross language connections. The numbers
(Petrov et al., 2012). Finally we train a delexical- of bilingual word pairs produced for all the eight
ized dependency parser on the labeled sentencisiguage pairs and the numbers of words in each
in the source language based on the universal PA8nguage are given in Table 1.



Table 1: The number of words in each language and the number of sdbdotgdal word pairs for each
of the eight language pairs.

| Language Pairs | # Source Words | # Target Words | # Bilingual Word Pairs |
English vs Danish 26599 17934 1140
English vs Dutch 26599 27829 2976
English vs German 26599 69336 1905
English vs Greek 26599 13318 869
English vs Italian 26599 13523 2347
English vs Portuguesge 26599 27782 2408
English vs Spanish 26599 16465 2910
English vs Swedish 26599 19072 1779

Table 2: The feature templates used for the cross-lingual dependarsifigp dir denotes the direction
of the dependency relationship, which has two valllegt, right}. dist denotes the distance between
the head word and the dependent word, which has five vdllied 3-5, 6-10, 11}

Feature Template \ Feature Description \

UPOS (wp) the head word’s universal POS tag

UPOS (wq) the dependent word’s universal POS tag

UPOS (wp,wq) the universal POS tag pair of the head and dependent word

R(wp) the head word’s distributed representation

R(wq) the dependent word’s distributed representation

dir&UPOS conjunction features related to the dependency direction

dist&UPOS conjunction features related to the dependency distance
dir&dist&U POS | conjunction features related to the dependency direction and distance

To perform distributed cross-lingual representatraining effort. The dimensioh of the embedding
tion learning using the proposed deep network arword vectors inR is set a00.
chitecture, we first constructed the two-class train- ) )
ing dataset from all the sentences (training and-3 Crosslingual Dependency Parsing
test sentences) of the two language domains. Thié/e used the MSTParser (McDonald et al., 2005a;
requires the creation of sub-sentences with fixedcDonald et al., 2005b) as the basic dependency
window sizec from the given sentences. We usedparsing model. MSTParser uses spanning tree
window sizec = 5 in the experiments. For ex- algorithms to seek for the candidate dependency
ample, for a given sentence “I visited New York trees and employs an online large margin train-
”, we can produce a number of sub-sentencedg optimization algorithm. MSTParser is widely
including “<PAD> <S> | visited New”, “<S> 1  used in the literature for dependency parsing tasks
visited New York”, “I visited New York ., “vis- and has demonstrated good empirical results in the
ited New York . </S>", and “New York . </S>  CoONLL shared tasks on multilingual dependency
<PAD>", where <PAD> is special token to fill parsing (Buchholz and Marsi, 2006; Nivre et al.,
the length requirement. Negative samples are corz007). For this dependency parsing model, there
structed by simply replace the middle word of eachare a few parameters to be set: the number of max-
sub-sentence with a random word. imum iterations for the perceptron training, and

the number of best-k dependency tree candidates.

With the constructed training data, we then per\We set the number of iterations to be 10 and only
formed training over the deep neural network. Weconsidered the best-1 dependency tree candidate.
used 3 hidden layers with 100 hidden units in For the proposed cross-lingual dependency
each layer, considering the model capacity and thparsing approach, we used both the delexi-



Table 3: Test performance in terms of UAS (unlabeled attachment scor#)eoeight cross-lingual
dependency parsing task&.denotes the improvements of each method oveBtmelinemethod.

| Tasks [ Basdline| Proj A [Proposed A | X-lingual |
EN2DA 36.53 | 41.25 4.72| 42.56 6.03] 38.70
EN2DE | 46.24 | 49.15 2.91] 49.54 3.30] 50.70
EN2EL 61.53 | 62.36 0.83] 62.96 1.43| 63.00
EN2ES | 52.05 | 5454 2.49] 55.72 3.67] 62.90
EN2IT 56.37 | 57.71 1.34) 59.05 2.68/ 68.80
EN2NL 61.96 | 64.41 245 65.13 3.17) 54.30
EN2PT 68.68 | 71.47 2.79] 72.38 3.70 71.00
EN2SV 57.79 16099 3.20] 61.88 409 56.90

Average| 55.14 [57.74 2.60] 5890 3.51] 5829 |

calized universal POS tag based features andlable 4: Statistic differences. For each task, we
the language-independent word features produceeport the percentage of sentences in the test data
from the deep learning as input features for thegrom the target language which share the same se-
MSTParser. The set of universal POS tag baseduence of universal POS tags with some sentences
feature templates is given in Table 2. For eachin the source language but with different depen-
dependency relationship between a head wagyrd dency trees.

and a dependent word;, a set of features can
be produced from the feature templates in Ta-

| Target Language | Sentence Difference |

ble 2, which can be further augmented Bywy,) Danish 0.31%
andR(w,). We compared our proposed approach Dutch 1.81%
(Proposedl with three other methodsBaseline, German 1.40%
Proj and X-lingual. The Baselinemethod uses a Grgek 1.20%
delexicalized MSTParser based only on the uni- Italian 2.40%
versal POS tag features. TReoj method is devel- Portuguese 1.04%
oped in (Durrett et al., 2012), which uses a bilin- Spanish 0.97%
gual dictionary to learn cross-lingual features and Swedish 2.31%

then uses them as augmenting features to train a

delexicalized MSTParser. Thélingual method

uses unlabeled parallel sentences to learn crostrms poorly across all the tasks. The average un-
lingual word clusters and used them as augmentabeled attachment score for this approach across
ing features to train a delexicalized MSTParsesll the eight tasks is very low (about 55.14), which
(Tackstdm et al., 2012). All parsers except suggests that the twelve universal POS tags are far
lingual are trained on the labeled sentences in th&om enough to produce a good cross-lingual de-
source language domain and tested on the tependency parser. Considering the small number
sentences in the target language domain in thef universal POS tags, its limited discriminative
given dataset. The performance is measured usirggpacity as input features for dependency pars-
the standard unlabeled attachment score (UAS)jng is understandable. To further verify this, we
The X-lingual method uses different auxiliary re- calculated the percentage of sentences in the test
sources (parallel sentences), and we hence directiata which share the same sequence of universal
cited the results reported in §Ekstbm et al., POS tags with a training sentence in the source

2012) on the same dataset. language but have different dependency parsing
' ' structures. The values for the eight tasks are pre-
4.4 Resultsand Discussions sented in Table 4. The non-trivial values reported

We reported the empirical comparison results inverified the universal POS tags’ drawback on lack-
terms of unlabeled attachment score (UAS) in Taing discriminative capacity.
ble 3. We can see that tligaselinemethod per- By relexicalizingthe delexicalized MSTParser



via augmenting the POS tag sequences witlthe EN2EL (English vs. Greek) task, which is
learned interlingual features, both tAeoj method  1.6% of the number of source words aBd% of

and the proposed method overcome the drawthe number of target words. The results are re-
back of using solely universal POS tags and proported in Figure 3. We can see that by reducing the
duce significant improvements over tBaseline number of bilingual word pairs, the performance
method across all the tasks. Moreover, the proef the proposed cross-lingual dependency parsing
posed method consistently outperforms B#ise- method degrades on all tasks. This is reasonable
line and Proj for all the eight tasks. By exploit- since the word pairs serve as the pivots for learn-
ing only free bilingual dictionaries, the proposeding cross-lingual word embeddings. Nevertheless,
method achieves similar average performance tby preserving 75% of the selected word pairs, the
the X-lingual method which requires additional proposed approach can still outperform fRj
parallel sentences. All these results demonstrateaiethod across all the tasks. Even with 0Bl

the efficacy of our word representation learningof the word pairs, our method still outperforms
method for cross-lingual dependency parsing.  theProj method on most tasks. These results sug-
gest that the proposed cross-lingual word embed-
ding method only requires a reasonable amount of
bilingual word pairs to effectively transfer a de-
In the experiments above, all the labeled senpendency parser from the source language to the
tences for dependency parsing training are fromarget language.

the source language. We wonder how much bene-

fit we can get if there are a small number of labeled UAS vs # of Bilingual Word Pairs

sentences in the target language as well. To answ
this question, we conducted experiments by using
a small number #4) of labeled sentences in the  °f
target language domain together with the labelec s}
sentences in the source language domain to trai v 60
cross-lingual dependency parsers. Again the pers
formance of the parsers are evaluated on the te: >°
sentences in the target language. We tested a fe sof
different ¢, values with¢, € {500,1000,1500}.
We reported the unlabeled attachment score for al
the eight cross-lingual dependency parsing task
in Figure 2. We can see that tBaselinemethod
still performs poorly across the range of different
setting for all the eight tasks. Theroj method Figure 3: Test performance in terms of UAS (unla-
and the proposed method again consistently outeled attachment score) in the target language with
perform the baseline method across all the taskslifferent numbers of bilingual word pairs.

while the proposed method achieves the best re-

sults across all the eight tasks.

4.5 Impact of Labeled Training Datain
Target Language

T T T T T T T T
75 (I Proj [ Proposed-50% [ Proposed-75% Il Proposed—100%

45+

40t B
EN2DA EN2DE EN2EL EN2ES EN2IT EN2NL EN2PT EN2SV
Task

5 Conclusion

4.6 Impact of the Number of Bilingual Word |, this paper, we proposed to automatically learn
Pairs language-independent features within a deep neu-
For the eight language pairs, we have reportedal network architecture to address cross-lingual
the numbers of words in each language domaimnlependency parsing problems. We first con-
and the numbers of selected bilingual word pairsstructed a set of bilingual word pairs with Wiki-
in Table 1. Next we investigated how the num-tionary, which serve as the pivots in the bilingual
ber of word pairs affects the performance of thevocabulary for building connections across lan-
proposed cross-lingual dependency parsing. Witlguages. We then conducted distributed word rep-
the selected full set of bilingual word pairs in resentation learning by training a constructed aux-
Table 1, we random selected% of them with iliary classifier using deep neural networks, which
m € {50,75,100} to conduct experiments. Note induced a real-valued embedding vector for each
whenm = 50, we only used35 word pairs for word of the bilingual vocabulary to capture con-



EN2DE

EN2EL

]
0
40 48
g g
< 39 S o
38 e o *
37 I SRR * 46*- 1
36* % Baseline ¥ Baseline 605 % Baseline
© Proj 45 O Proj 60 © Proj
35 -5 Proposed - Proposed - Proposed
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Labeled target training data Labeled target training data Labeled target training data
EN2ES EN2IT

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Hm oo
7. e *
¥ Baseline ¥ Baseline
51 © Proj 55 © Proj
- Proposed £ Proposed
0 500 1000 1500 0 500 1000 1500

Labeled target training data Labeled target training data

61 ‘% Baseline 68 ¥ Baseline - 571 ‘% Baseline
© Proj © Proj O Proj
60 - Proposed 67 - Proposed 561 £ Proposed
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

Labeled target training data Labeled target training data Labeled target training data

Figure 2: Unlabeled attachment score (UAS) on the test sentences ingéel&mguage by using differ-
ent number of additional labeled training sentences in the target language.
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