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Abstract—We present an efficient global optimization algo-
rithm for exponential family principal component analysis (PCA)
and associated low-rank matrix factorization problems. Expo-
nential family PCA has been shown to improve the results
of standard PCA on non-Gaussian data. Unfortunately, the
widespread use of exponential family PCA has been hampered
by the existence of only local optimization procedures. The
prevailing assumption has been that the non-convexity of the
problem prevents an efficient global optimization approach from
being developed. Fortunately, this pessimism is unfounded. We
present a reformulation of the underlying optimization prob-
lem that preserves the identity of the global solution while
admitting an efficient optimization procedure. The algorithm we
develop involves only a sub-gradient optimization of a convex
objective plus associated eigenvector computations. (No general
purpose semidefinite programming solver is required.) The low-
rank constraint is exactly preserved, while the method can be
kernelized through a consistent approximation to admit a fixed
non-linearity. We demonstrate improved solution quality with the
global solver, and also add to the evidence that exponential family
PCA produces superior results to standard PCA on non-Gaussian
data.

I. INTRODUCTION

Few methods are more commonly used in machine learning
and statistical data analysis than principal component analysis
(PCA). PCA provides a convenient form of dimensionality
reduction that is useful for visualization, compression, feature
discovery, embedding, and data cleaning. Three key features
of PCA make it particularly well suited for these purposes;
namely, that it optimally approximates the original data under
a well understood reconstruction loss, it re-codes data using
uncorrelated features, and it admits an efficient procedure for
computing optimal embeddings. PCA is not without its short-
comings however, as it suffers from well known weaknesses;
particularly the tacit assumptions of linearity and Gaussian
data.

In this paper we focus on the implicit Gaussian assump-
tion and consider generalized forms of PCA that are better
suited to non-Gaussian data. Many extensions to PCA have
been proposed that relax the assumption of a Gaussian data
distribution. Exponential family PCA [1], [2], [3], [4] is
the most prominent example, where the underlying statistical
inference principle for dimensionality reduction is extended
to the general exponential family. Closely related approaches

use non-least squares cost functions for generalized linear
modeling [5], [6], [7] and generalized matrix factorization
[8], [9], [10]. All of this previous work has shown that
improved forms of dimensionality reduction can be obtained
by using exponential family models appropriate for the data
at hand, such as multinomial models for discrete data [2],
[3], [4], Poisson models for integer data [1], and exponential
models for nonnegative data [6], [7]. (Although not focused
on dimensionality reduction per se, independent component
analysis [11] and its extensions [12] also deploy non-Gaussian
assumptions.) Given data from a non-Gaussian distribution
these techniques are better able than PCA to capture the
intrinsic low dimensional structure or independent feature
structure.

The main drawback with existing non-Gaussian dimension-
ality reduction methods, however, is that they rely on iterative
local optimization procedures, which are not guaranteed to
produce an optimal embedding under their respective cost
functions. In fact, it has been assumed [5], [8] that efficient
global optimization is not possible in these cases, since the
cost function being minimized is non-convex and an additional
non-convex constraint is used to enforce feature orthogonality.
The apparent difficulty of solving the underlying optimization
problem has dissuaded researchers from investigating global
solution methods for these problems. Unfortunately, the lack
of global solution methods has kept exponential family PCA
and its relatives from being widely deployed, even when Non-
Gaussian data is ubiquitous.

In this paper, we show that, despite the non-convex nature
of the underlying problem, an efficient global optimization
strategy can be developed for exponential family PCA and
related low-rank matrix factorization problems. In particular,
we demonstrate through a series of problem reformulations,
exploiting convex duality of sub-problems and eigenvector
properties, that an efficiently solvable formulation of the
problem can be derived that preserves solution equivalence
to the original. Although our focus in this paper is not on
non-linearity per se, we also show how a general empirical
approximation can be kernelized, thus enabling a fixed non-
linearity to be incorporated in the model in a manner analogous
to kernel PCA [13], [14]. (We do not specifically address the
question of how to estimate the non-linearity itself, as is done



in [15], [16], [17]—this remains an issue for future work.)
The remainder of this paper is organized as follows. First,

we provide a brief recap of PCA in Section II, showing its
connection to approximate matrix factorization and maximum
likelihood estimation of Gaussian means. Then using PCA as
a foundation, we briefly review the extension to exponential
family PCA, re-express it in our framework, and explain the
difficulty that exists in the resulting optimization. Then in
Section III we present the main result of the paper: we show
how the apparently hard optimization problem can be refor-
mulated in an equivalent but efficiently solvable form. Finally,
we discuss an extension to a flexible empirical approximation
approach in Section IV that enables the general introduction
of a kernel, and thus allows us to incorporate non-linearities in
the model. Section VI concludes the paper with a discussion
of future directions.

II. PRELIMINARIES

Assume we are given a t × n data matrix, X , consist-
ing of t observations of n-dimensional feature vectors, Xi:,
from which we would like to recover a k-dimensional re-
representation of the data. That is, one would like to assign
a low dimensional vector, Zi:, as a reduced representation of
each high dimensional observation, Xi:. This is often thought
of as discovering a hidden low dimensional manifold in the
high dimensional feature space. A key restriction that we
would also like to enforce is that the features used for coding,
Z:j , should be statistically uncorrelated; that is, we would
like to enforce the constraint Z>Z = I , which ensures that
the codes are expressed by orthogonal features in the low
dimensional representation.

A. PCA

Given the above setup, PCA adds the assumptions of lin-
earity and Gaussian distributed data, albeit implicitly. In fact,
there are many mathematically equivalent ways to derive PCA.
In multivariate statistics, principal components are originally
defined to be the (orthogonal) directions of maximum variance
in the feature space [18]. For our purposes, we will approach
PCA from the standpoint of self-supervised regression: we
seek a low dimensional encoding that allows the original data
to be optimally reconstructed by a linear map. That is, we
would like to simultaneously assign a t × k matrix of low
dimensional codes, Z, and a k × n matrix of reconstruction
weights, W , such that X ≈ ZW . If least squares reconstruc-
tion error is used as cost function to minimize, then one obtains
a form of self-supervised regression that is equivalent to PCA

min
Z:Z>Z=I

min
W

1

2
tr

(

(X − ZW )(X − ZW )>
)

, (1)

where tr denotes matrix trace. This formulation also suggests
that PCA can be interpreted as a form of approximate matrix
factorization under a constraint of bounded rank k [8], [9],
[10].

Note that, superficially, the optimization problem (1) does
not appear to be easy. The objective is not jointly convex in

Z and W (although it is marginally convex in W for fixed
Z, and vice versa) nor is the constraint on Z convex. Despite
the ostensive difficulty, the task has sufficient structure that a
globally optimal solution can be easily recovered, as is well
known. Since we will need to understand and adapt they key
aspects of this argument, below we briefly recap the major
steps in the derivation.

First, since (1) is convex in W for fixed Z, the inner
minimization can be solved by determining a critical point,
given by a W that satisfies d/dW = Z>(ZW − X) =
W − Z>X = 0, immediately implying that W = Z>X .
Substituting this in the original problem yields

min
Z:Z>Z=I

1

2
tr

(

(I − ZZ>)(I − ZZ>)XX>
)

. (2)

Although the objective remains non-convex in Z, given the
prevailing constraint on Z the objective simplifies to (I −
ZZ>)(I −ZZ>) = I −2ZZ> +ZZ>ZZ> = I −ZZ>, thus
yielding a simpler problem with a convex objective

arg min
Z:Z>Z=I

1

2
tr

(

(I − ZZ>)XX>
)

= arg max
Z:Z>Z=I

tr
(

ZZ>XX>
)

. (3)

Famously, despite the non-convex constraints, (3) has an effi-
ciently computable solution given by Z = Q

(k)
max(XX>)—the

top k eigenvectors of XX> [19]. That is, the low dimensional
basis for re-coding the data is given by the top k eigenvectors
of the empirical covariance matrix.1 Unfortunately, each step
of this derivation faces a non-convex problem, and it appears
that it is only by very special structure that a globally optimal
solution is obtained. Generalizing this derivation to other
conditions has been considered difficult. Nevertheless, we
demonstrate concrete progress below.

B. Gaussian Model

The generalized PCA models we consider below are based
on a probabilistic interpretation of classical PCA. Once again,
there are many formulations of PCA as the solution of maxi-
mum likelihood or maximum a posteriori problems [20], [21],
[22], all inevitably based on a multivariate Gaussian model.
The specific form of probabilistic PCA we consider will lead
directly to exponential family PCA below, and provide a
bridge between the classical least squares formulation and
more recent formulations based on alternative loss functions.

Consider a conditional Gaussian model where an n-
dimensional vector x is generated from a k-dimensional code
z and a set of parameters W , according to x = W>

z + ε
where ε ∼ N(0, αI) for some fixed variance α > 0. Then the
conditional density of x given z and W is given by

p(x|z,W ) = exp

(

1

α
z
>Wx −

1

2α
x
>
x − A(z>W )

)

, (4)

1Here we are assuming that the data has already had its mean subtracted
so that X is centered; that is X>

1 = 0, meaning that ˆcov(X) = XX>/t−
(X>

1)(1>X)/t2 = XX>/t. We suppress such details and assume the
data is centered as necessary.



such that

A(z>W ) =
1

2α
z
>WW>

z +
n

2
log(2πα). (5)

Once again, given a matrix of data X , we would like to
assign a low dimensional code, Zi:, to each high dimensional
observation, Xi:, and also solve for a matrix of shared re-
construction parameters, W , but now following the goal of
maximizing the conditional likelihood of the data, p(X|ZW ).
As before, we maintain the constraint that the code features
remain uncorrelated (i.e. Z>Z = I). Combining these notions
yields the optimization problem

min
Z:Z>Z=I

min
W

1

2α
tr

(

ZWW>Z>
)

+
nt

2
log(2πα)

−
1

α
tr

(

ZWX>
)

+
1

2α
tr

(

XX>
)

(6)

= min
Z:Z>Z=I

min
W

1

2α
tr

(

(X − ZW )(X − ZW )>
)

+
nt

2
log(2πα). (7)

It is obvious that (7) has the same minimizer as (1) since
the objectives are identical up to a multiplicative and additive
constant. Note that the result does not depend on the assumed
Gaussian variance α.

C. Exponential Family PCA

The form (4) suggests an immediate generalization of the
Gaussian conditional model to a general class exponential
family models. The resulting extension of Gaussian to non-
Gaussian PCA is precisely the original proposal of [1]. A
general exponential family representation of the conditional
distribution of an observation vector x given a low dimensional
code vector z and parameter matrix W can be written as

p(x|z,W ) = exp
(

z
>Wx + log q(x) − A(z>W )

)

, (8)

where

A(z>W ) = log

∫

exp
(

z
>Wx

)

q(x) dx . (9)

By altering the choice of base measure q(x), features of x,
domain of x, and domain of W , one can change the form of
the conditional model on x given z. For example, exponential,
Poisson, Bernoulli, and multinomial distributions on x can be
obtained through suitable choices of these components [1],
[23]. General Markov random field models on x can also be
obtained in this way [23]. A key practical concern is whether
one can compute the log normalization factor, A(z>W ). It
turns out that this quantity has a closed form solution for
the standard distributional forms mentioned above, and can be
efficiently computed for Markov random fields with sufficient
structure [23]. We revisit this issue in Section IV below.

An exponential family model can be used for dimensionality
reduction in the same manner as the Gaussian model. Specif-
ically, dimensionality reduction can be cast as a maximum
conditional likelihood problem, where the codes, Z, and

parameters, W , are simultaneously optimized, subject to the
independence constraint on Z. That is, we minimize

min
Z:Z>Z=I

min
W

(

∑

i

A(Zi:W ) − χi

)

− tr
(

ZWX>
)

, (10)

where χi = log q(Xi:). This form is equivalent to the proposed
objective in [1], with the exception of the orthogonality
constraint Z>Z = I (which was not originally imposed).
Despite simplifying the problem by omitting the orthogonality
constraint, [1] did not provide a global solution procedure.
Instead, an alternating minimization procedure was suggested
that is not guaranteed to avoid local minima. The original
formulation of [1] has since been modified by [2], [3] and [5],
and encapsulated in an independently developed model [4]. All
of these formulations differ slightly in detail, but uniformly
rely on iterative solution procedures that do not bring any
guarantee of global optimality. [8] notes that using a non-
least squares reconstruction loss in (1) tends to create local
minima. However, we now show that even with the non-convex
orthogonality constraint, a regularized version of (10) can be
reformulated that bypasses local minima, and allows a global
solution to be obtained. Our derivation exploits both results
on eigenvector analysis [19] and convex duality [23].

III. EFFICIENT GLOBAL OPTIMIZATION

The optimization objective we consider for dimensional-
ity reduction augments the original exponential family PCA
formulation (10) with a quadratic regularizer on W . The
regularization term can be interpreted as a zero-mean Gaussian
prior on W with diagonal covariance. The addition of a
regularization term allows a maximum a posteriori formulation
of the problem and also simplifies subsequent mathematical
details. The original formulation (10) can be approximated
arbitrarily closely by setting the regularization parameter, β,
close to zero. We do not impose any prior on Z, but rather
maintain the orthogonality constraint Z>Z = I . Thus we are
left with the main optimization problem

min
Z:Z>Z=I

min
W

(

∑

i

A(Zi:W ) − χi

)

− tr
(

ZWX>
)

+
β

2
tr

(

W>W
)

. (11)

As before, the problem is not jointly convex in W and Z and
has a non-convex constraint. The hope for an efficient solution
rests on the fact that the problem is convex in W for fixed Z.
In particular, it can be verified that A(z>W ), as defined in
(9) is convex in W for given z [23], [24]. This fact, combined
with a key result from the semidefinite optimization literature
allows us to derive our main result.

Theorem 1: The optimization problem (11) is equivalent to

max
U

min
Z:Z>Z=I

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>ZZ>
)

, (12)



where U is a t × n matrix, A∗(Ui:) is the Fenchel conjugate
of A(Zi:W ), and the parameters W can be recovered from U
and Z by

W =
1

β
Z>(X − U). (13)

The proof will proceed by a series of reformulations stated
in lemmas.

Lemma 1:

min
W

(

∑

i

A(Zi:W ) − χi

)

− tr
(

ZWX>
)

+
β

2
tr

(

W>W
)

(14)

= max
U

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>ZZ>
)

. (15)

Proof: First consider A(Zi:W ) as defined in (9). This
function is convex in W and can be re-expressed as
A(Zi:W ) = maxUi:

tr
(

Zi:WU>
i:

)

− A∗(Ui:) where A∗ is
the Fenchel conjugate of A. Importantly, A∗ is a closed
convex function [24], [23]. Thus, we can rewrite the inner
minimization of (11) as

min
W

max
U

−
(

∑

i

A∗(Ui:) + χi

)

+ tr
(

ZW (U − X)>
)

+
β

2
tr

(

W>W
)

. (16)

Let F (W,U) denote the objective in (16). Crucially, one can
verify that F satisfies the conditions of the strong minmax
theorem (stated in Theorem 2 below), which allows the order
of the minimization and maximization to be reversed. That is,
based on the strong minmax theorem we conclude that (16) is
equivalent to

max
U

min
W

−
(

∑

i

A∗(Ui:) + χi

)

+ tr
(

ZW (U − X)>
)

+
β

2
tr

(

W>W
)

. (17)

Now, the inner minimization on W can be easily solved by
determining a critical point, since the function is convex in W
for fixed U . Thus, d/dW = Z>(U − X) + βW = 0 which
implies W = 1

β
Z>(X −U). Substituting this into (17) yields

the result.
Theorem 2: (Strong Minmax Property) Consider a joint

function f(x, y) defined over x ∈ X and y ∈ Y . Assume
(1) f(·, y) is a closed and convex for all y ∈ Y ; (2) f(x, ·) is
closed and concave for all x ∈ X; (3) supy∈Y f(x, y) < ∞
for all x ∈ X; and (4) f(·, y) has bounded level sets {x :
f(x, y) ≤ t} for all y ∈ Y . Then infx∈X supy∈Y f(x, y) =
supy∈Y infx∈X f(x, y) and the solution value is finite.

Proof: This theorem is just a specialization of a standard
result in convex analysis; specifically [25, Theorem 37.3] and

[26, Page 95]. We will make use of it one more time below.

Next we turn to the outer minimization on Z from the
original problem (11), which involves a non-convex constraint.
Note that in the optimization problem (15) Z only appears
as the outer product ZZ>. This allows us to rewrite the
minimization in terms of a square matrix M . Although initially
this will appear like a relaxation of the original optimization
problem, later we will verify that the optimal solution is
preserved.

Lemma 2:

min
Z:Z>Z=I

max
U

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>ZZ>
)

(18)

≥ min
M :I�M�0,tr(M)=k

max
U

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>M
)

. (19)

Proof: Consider the relationships that hold between the
following sets of constraints on M

{M : M = ZZ> for some Z such that Z>Z = I} (20)
= {M : I � M � 0, tr(M) = k,M2 = M} (21)
⊆ {M : I � M � 0, tr(M) = k}. (22)

The first equality holds because both sets of constraints bound
the eigenvalues of the matrices to be either 0 or 1, with exactly
k being 1 [27]. Unfortunately, neither of the first two sets of
constraints is convex on M . Therefore, we relax the second set
of constraints merely by dropping the non-convex constraint
M2 = M , which then means the eigenvalues of M are only
constrained to be between 0 and 1 with their sum totaling to k.
Obviously since the problem is a minimization, a lower bound
is obtained by relaxing the constraint.

Thus, we have achieved a formulation where the problem is
convex, albeit with a relaxation. That is, the outer minimization
in (19) is convex in M , since a maximum of linear functions
is convex and the constraints are convex [24]. Let G(M,U)
denote the objective in (19). Once again, one can verify that
this function satisfies the conditions of the strong minmax
theorem, which allows another reversal of a minimization and
maximization.

Lemma 3: An equivalent optimization problem to (19) is

max
U

min
M :I�M�0,tr(M)=k

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>M
)

. (23)

Proof: The proof is immediate upon verifying that
G(M,U) satisfies the conditions of Theorem 2.

Note that the inner minimization is now in the form of
a standard semidefinite program. We invoke a fundamental
theorem about semidefinite programs of this form to achieve
the following result.



Lemma 4: The optimization problem (23) is equivalent to

max
U

min
Z:Z>Z=I

−
(

∑

i

A∗(Ui:) + χi

)

−
1

2β
tr

(

(X−U)(X−U)>ZZ>
)

. (24)

Proof: The result comes from [19], which shows that
the semidefinite program maxM :I�M�0,tr(M)=k tr(MA) has
the solution Z = Q

(k)
max(A), which is equivalent to solving

minZ:Z>Z=I tr(ZZ>A).
The final step of the proof of Theorem 1 is to establish

that nothing has been lost by the lower bound relaxation in
Lemma 2.

Lemma 5: The optimization problem (24) is equivalent to
(18).

Proof: Let (U∗, Z∗) be a solution to (24). Note that
(24) is an equivalent optimization problem to (19) by the
previous two lemmas. Hence for M∗ = Z∗Z∗> we have
that (U∗,M∗) is a solution of (19). Recall that (19) was a
lower bound on (18) only insofar as the constraint M 2 = M
was dropped. However, the solution M ∗ to (19) automatically
satisfies M∗2 = M∗. Hence it also is a solution of (18).

A. Algorithm

Theorem 1 suggests an efficient algorithmic approach for
solving the exponential family PCA problem (11), consisting
of an outer maximization loop on U and an inner minimization
on Z. By Lemma 4 the inner loop can be solved by setting
Z = Q

(k)
max((X − U)(X − U)>), hence relying on an

efficient eigenvector computation. Crucially, the objective (12)
is concave in U , since −A∗(Ui:) is concave, and a minimum
of concave functions (i.e. the concave quadratics in the trace
term) is also concave.

To solve the outer maximization we deploy a bundle method
[28], which only requires that a supergradient direction (i.e.
a locally improving direction) can be found at every step. At
a given U , once the inner solution Z is computed, it can be
verified that a supergradient direction is given by the gradient
of the objective at Z [29], which in this case is given by
−∇U (

∑

i A∗(Ui:) −
1
β
ZZ>(U − X).

IV. EMPIRICAL APPROXIMATION

An interesting and practical extension of the previous ap-
proach is possible. In practice, the log normalization function
A might not be easily computable, which means that its
Fenchel conjugate A∗ might not be easily computable either,
which would make implementation of the resulting exponential
family PCA model virtually impossible.

In general, one can always use a sample approximation to
the integral (9) and achieve an empirical approximation to the
true underlying exponential family model as follows. If one
replaces the integral definition (9) with an empirical definition
of A,

A(z>W ) = log
∑

i

exp
(

z
>WXi:

)

/t, (25)

then the conjugate function can be given by

A∗(Θi:) = tr
(

Θi: log Θ>
i:

)

(26)

for a 1×t vector Θi: such that Θi: ≥ 0 and Θi:1 = 1. With this
model the exponential family PCA problem can be expressed
as

max
Θ:Θ≥0,Θ1=1

min
Z:Z>Z=I

−tr
(

Θ log Θ>
)

−
1

2β
tr

(

(I − Θ)XX>(I − Θ)>ZZ>
)

. (27)

The same algorithm as above can be employed to optimize
this objective.

One of the main benefits of working with the empirical
approximation is that it is automatically kernelized. That is, the
data matrix X only appears in the training objective through
the kernel matrix XX>. This property allows one to work
with a fixed non-linearity defined through a kernel.

Interestingly, the empirical model would give equivalent
results to classical PCA (or kernel PCA) if Θ were uniform,
in which case I − Θ would correspond to the centering
matrix H = I − 11

>, and (27) would be equivalent to
arg maxZ:Z>Z=I tr(HXX>HZZ>). The solution is simply
Z = Q

(k)
max(HXX>H), the top k eigenvectors of the centered

covariance matrix [13], [14].

V. EXPERIMENTAL RESULTS

To investigate the performance of the proposed approach,
we conducted experiments on both synthetic and real world
data, comparing the proposed global optimization algorithm
for exponential family PCA to the standard alternating mini-
mization approach [1] and to standard PCA.

We first conducted two sets of synthetic experiments on data
generated by Bernoulli and exponential distributions respec-
tively. For the Bernoulli model, we generated a random set of
latent codes Z forming four clusters in a 100× 2 matrix, thus
creating two dimensional codes for 100 data points, as shown
in Figure 1. We then randomly generated a 2 × 20 parameter
matrix W to be used to expand the two dimensional codes
into 20 dimensional parameter vectors. Finally we sampled a
100×20 matrix X from Bernoulli distributions defined by the
natural parameters ZW .

The dimensionality reduction methods were then applied
to the data to produce a two dimensional embedding of
X . In particular, the two exponential family PCA methods,
using global and local optimization respectively, were both
applied using the Bernoulli model, and these were compared
to standard PCA. The results produced by the three approaches
are shown in Figure 2. Interestingly, the global optimization
method and standard PCA both achieve similar results on this
data, and both successfully separate the four clusters in the
low dimensional embedding. However, the local optimization
approach does not perform nearly as well on this data set,
demonstrating that local minimization might not be the most
effective training approach in every circumstance.
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Fig. 1. Visualization of the two dimensional Z used for data generation in the synthetic Bernoulli experiment.
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Fig. 2. Two dimensional embeddings produced by the three approaches on two dimensional space for the synthetic experiment with the Bernoulli model.

The second synthetic experiment involved data generated
from a multivariate exponential distribution. We generated
latent codes Z and the parameter matrix W in a slightly
different manner than above. In particular, we generated a
100×2 matrix Z and the 2×3 parameter matrix W to satisfy
the constraint ZW < 0. The 100×3 matrix of data X was then
sampled componentwise from exponential distributions with
mean parameters given by Θ = −1/(ZW ). Figure 3 shows
the data matrix X generated in three dimensional space.

As before, we applied each of the dimensionality reduction
techniques to embed the data into two dimensions, but here
we applied the exponential family PCA techniques (global and
local) with an exponential model. The results are shown in
Figure 4. In this case, one can observe that both the global
and local exponential family PCA methods are more robust to
outliers than standard PCA, given highly spread data generated
from an exponential distribution.

We also conducted experiments using a real world data
taken from the 20 newsgroups data set, which contains 200
documents sampled from four newsgroups: comp.*, rec.*,
sci.* and talk.*. This document data is represented using 100
binary word indicator features. Thus we conducted experi-

ments using Bernoulli models.
Each of the three methods were used to embed the data

into 2, 5 and 10 dimensional representations. To evaluate
the quality of the embeddings, we measured the integrity
with which the clusterings were preserved in the dimension-
ality reduction process. This was done by running k-means
clustering on the reduced representations and comparing the
clustering accuracy to the different cluster labels given by the
newsgroup identities. Table I shows the clustering accuracies
obtained by the different dimensionality algorithms using 2, 5
and 10 dimensional embeddings. These results are averaged
over 10 runs where an independent sample of documents
is sampled each time. In this table one can see that the
global optimization approach for exponential family PCA with
a Bernoulli model achieves a slight advantage over local
optimization for exponential family PCA and over standard
PCA.

Finally, we conducted experiments using the Yale face
image data set, which consists of 165 grayscale images of
15 individuals. There are 11 images per subject, each with
a different facial expression or configuration: center-light,
w/glasses, happy, left-light, w/no glasses, normal, right-light,
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Fig. 3. Visualization of the data X generated in the synthetic experiment for the exponential distribution model.
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Fig. 4. Two dimensional embeddings produced by the three approaches on two dimensional space for the synthetic experiment with the exponential model.

TABLE I
EVALUATING EMBEDDING QUALITY VIA K-MEANS CLUSTERING

ACCURACY OBTAINED ON NEWSGROUP DATA. COMPARING BERNOULLI
EXPONENTIAL FAMILY PCA TO STANDARD PCA. GLOBAL DENOTES

GLOBAL OPTIMIZATION METHOD, LOCAL DENOTES LOCAL OPTIMIZATION
METHOD AND STANDARD DENOTES STANDARD PCA.

#Dim Full Data Global Local Standard

2 0.37 0.42 0.40 0.40
5 0.37 0.40 0.36 0.39
10 0.37 0.39 0.38 0.38

sad, sleepy, surprised, and wink. Each image is represented
with 1024 pixels. From this data we formed three subsets—
Yale 1, Yale 2 and Yale 3—and used the three algorithms to
produce a two dimensional embedding of the data. Once again
we evaluated embedding quality by measuring the integrity
with which the clusters (images from different people) were
preserved by the dimensionality reduction process. We evalu-
ated clustering performance using k-means in the reduced two-
dimensional space and compared the classes to the original
person identities. Yale 1 has 4 classes, containing Subjects
1, 3, 5 and 7, totaling 44 images; Yale 2 has 4 classes,

TABLE II
EVALUATING EMBEDDING QUALITY VIA K-MEANS CLUSTERING

ACCURACY OBTAINED ON YALE IMAGE DATA. COMPARING BERNOULLI
EXPONENTIAL FAMILY PCA TO STANDARD PCA. GLOBAL DENOTES

GLOBAL OPTIMIZATION METHOD, LOCAL DENOTES LOCAL OPTIMIZATION
METHOD AND STANDARD DENOTES STANDARD PCA.

Dataset Full Data Global Local Standard

Yale 1 0.5 0.68 0.64 0.61
Yale 2 0.59 0.52 0.43 0.45
Yale 3 0.51 0.44 0.38 0.38

containing Subjects 2, 4, 6 and 8, totaling 44 images; and
Yale 3 has 5 classes, containing Subjects 2, 4, 6, 8, and 10,
totaling 55 images. Since we cannot assume this data comes
from any specific exponential family distribution, we used the
empirical approximation presented in Section IV for both the
global and local optimization approaches and compared these
to standard PCA. Table II shows the clustering accuracies
achieved by the respective two dimensional embeddings. in
the two dimensional space. The convex approach presents an
obvious advantage over the other two approaches.



VI. CONCLUSION

We have introduced a global optimization algorithm for
exponential family PCA. The derivation exploits a number
of facts from convex duality and eigenvector analysis to
achieve a global solution technique for this class of problems.
Experimental results demonstrate the benefits of the global
solution technique over existing local optimization methods.
We are also investigating the benefits of kernelization in the
context of non-Gaussian PCA models on real data.
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