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Abstract

In this paper, we propose to address the prob-
lem of domain adaptation for sequence label-
ing tasks via distributed representation learn-
ing by using a log-bilinear language adapta-
tion model. The proposed neural probabilis-
tic language model simultaneously models
two different but related data distributions in
the source and target domains based on in-
duced distributed representations, which en-
code both generalizable and domain-specific
latent features. We then use the learned
dense real-valued representation as augment-
ing features for natural language processing
systems. We empirically evaluate the pro-
posed learning technique on WSJ and MED-
LINE domains with POS tagging systems,
and on WSJ and Brown corpora with syn-
tactic chunking and named entity recognition
systems. Our primary results show that the
proposed domain adaptation method outper-
forms a number of comparison methods for
cross domain sequence labeling tasks.

1. Introduction

Domain adaptation aims to learn a prediction model
for a label-scarce target domain by exploiting infor-
mation in a label-rich source domain (Blitzer et al.,
2006; Daumé III, 2007; Ben-David et al., 2007; Daumé
III et al., 2010). Domain adaptation is prevailingly
needed for various sequence labeling tasks in natu-
ral language processing (NLP) area, such as syntactic
chunking (Daumé III, 2007; Huang & Yates, 2009),
part-of-speech (POS) tagging (Blitzer et al., 2011;
2006), parsing (McClosky et al., 2010), semantic role
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labeling (Carreras & Màrquez, 2005), and named en-
tity recognition (NER) (Daumé III, 2007; Turian et al.,
2010; Daumé III & Marcu, 2006).

In a practical domain adaptation learning scenario in
NLP, the source domain and the target domain usually
have very different vocabularies, which renders the lex-
ical feature-based NLP systems to perform poorly on
the target domain (Ben-David et al., 2007; 2010). For
example, a statistical machine learning model for POS
tagging systems based on lexical features trained on
newswire data with frequent terms like “CEO”, “cor-
poration” cannot correctly infer POS tags for biomed-
ical text with frequent terms like “metastases”, “se-
quencing” and “genomic”. Moreover, the learning
machine based on lexical features may produce in-
consistent predictions across domains. For example,
the word “signaling” in “signaling that . . .” from the
Wall Street Journal (WSJ) domain is a verb (VBG),
but it is a noun (NN) in “signaling pathway” from
the MEDLINE domain (Huang & Yates, 2010). Re-
cently, much work has been proposed to cope with
those problems in order to improve the prediction
performance for out-of-domain NLP systems, includ-
ing feature augmentation based supervised adaptation
method (Daumé III, 2007), semi-supervised adapta-
tion method (Daumé III et al., 2010), and representa-
tion learning methods (Blitzer et al., 2006).

In this paper, we propose to adapt sequence labeling
systems in NLP from a source domain to a different
but related target domain by inducing distributed rep-
resentations using a log-bilinear language adaptation
(LBLA) model. It combines the advantages of repre-
sentation learning methods from (Blitzer et al., 2006),
which employ generalizable features across domains to
reduce domain divergence, and feature augmentation
based (semi-)supervised adaptation learning methods
from (Daumé III, 2007; Daumé III et al., 2010), which
exploit both common and domain-specific features
from both domains. Specifically, the LBLA model si-
multaneously models the source distribution by learn-



Domain Adaptation with Probabilistic Language Adaptation Model

ing generalizable and source-specific word representa-
tions and models the target distribution by learning
domain-sharing and target-specific word representa-
tions. We then use the learned representation em-
bedding functions to map the original data into the
induced representation space as augmenting features,
which are incorporated into supervised sequence label-
ing systems to enable cross domain adaptability. The
proposed learning technique is empirically evaluated
for cross domain POS tagging systems on sentences
from WSJ and MEDLINE domains, cross domain syn-
tactic chunking and named entity recognition systems
on sentences from WSJ and Brown corpora, and is
shown to outperform a number of related methods.

2. Related Work

Domain adaptation has been intensively studied for
a variety of sequence labeling tasks in the natu-
ral language processing area. Daumé III & Marcu
(2006) proposed to distinguish between general fea-
tures and domain-specific features by training three
separate maximum entropy classifiers. They empiri-
cally showed the effectiveness of the proposed method
on mention type classification, mention tagging and
recapitalization systems. Jiang & Zhai (2007) investi-
gated instance weighting method for semi-supervised
domain adaptation by assigning more weights to la-
beled source and target data, removing misleading
training instances in the source domain, and augment-
ing target training instances with predicted labels.
They empirical evaluated their method for cross do-
main part-of-speech tagging and named entity recog-
nition to justify its efficacy. Daumé III (2007) pro-
posed an easy adaptation learning method (EA) by
using feature replication, which is later extended into
a semi-supervised version (EA++) by incorporating
unlabeled data via co-regularization (Daumé III et al.,
2010). These methods demonstrated good empirical
performance on a variety of NLP tasks.

Recently, representation learning methods have been
proposed to induce generalizable features by exploit-
ing large amount of unlabeled data from both domains,
which are then used to augment original instances to
improve cross domain prediction performance (Blitzer
et al., 2006; Ando & Zhang, 2005; Huang & Yates,
2009; 2010). Blitzer et al. (2006) proposed to seek
for common latent features by performing structural
correspondence learning (SCL), which models the cor-
relation between pivots (frequent lexical features) and
non-pivot features. Huang & Yates (2009) proposed
to induce hidden states as latent features by training
Hidden Markov Models (HMMs) on unlabeled sen-

tences from two domains. They empirically demon-
strated the efficacy of their approach on out-of-domain
part-of-speech tagging and syntactic chunking tasks.
Their learning technique is also further exploited in
(Huang & Yates, 2010), which aims to learn a multi-
dimensional feature representation by simultaneously
training multiple HMMs with different initializations.
Turian et al. (2010) empirically demonstrated that em-
ploying Collobert and Weston embeddings (Collobert
& Weston, 2008), Brown clusters, or HLBL embed-
dings (Mnih & Hinton, 2009) as extra word features
can improve the performance of out-of-domain named
entity recognition systems and in-domain syntactic
chunking systems.

Distributed representations are widely exploited in nat-
ural language processing area. Bengio et al. (2000;
2003) introduced neural network language models and
demonstrated how to combine neural network proba-
bility predictions with distributed representations for
words in order to outperform standard n-gram models.
Blitzer et al. (2004) demonstrated that those learned
distributed representations of symbols make sense lin-
guistically. The effectiveness of distributed representa-
tions has also been demonstrated on other NLP tasks,
such as sentiment analysis (Maas & Ng, 2010), syntac-
tic chunking, named entity recognition(Turian et al.,
2010), semantic role labelling (Collobert & Weston,
2008), and parsing (Socher et al., 2011).

3. Proposed Approach

Previous empirical results showed that latent gener-
alizable features can increase the accuracy for out-of-
domain prediction performance (Blitzer et al., 2006).
It has also been justified by a recent theoretic study
that a proper feature representation is crucial to do-
main adaptation due to its contribution on bridg-
ing domain divergence (Ben-David et al., 2007; 2010).
In this work, we propose to learn generalizable dis-
tributed representations of words from sentence struc-
tures to address the problem of domain adaptation for
sequence labeling tasks in NLP.

Distributed representations, which are dense, low-
dimensional, and continuous-valued, are called word
embeddings (Turian et al., 2010). Each dimension of
the word embedding stands for a latent feature of the
word, hopefully capturing useful semantic and syntac-
tic regularities. The basic idea to learn a distributed
representation is to link each word with a real-valued
feature vector, typically by using neural language mod-
els. A sentence can thus be transformed into a se-
quence of these learned feature vectors. The neural
language model learns to map the sequence of feature
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vectors to a prediction of interest, such as the condi-
tional probability distribution over the current word
given its previous context, and pushes the learned
word features to form grammatical and semantic sim-
ilarities (Bengio et al., 2000; 2003). The advantage of
this distributed representation method is that it allows
the model to generalize well to sequences that do not
appear in the training set, but are similar to training
sequences with respect to their distributed representa-
tions (Bengio et al., 2000). The simplest neural lan-
guage model is the log-bilinear language (LBL) model
developed in (Mnih & Hinton, 2007), which performs
linear predictions in the semantic word feature space.
Despite its simplicity, the LBL model has been shown
to outperform n-grams on a large dataset (Mnih &
Hinton, 2007; Mnih & Teh, 2012). Based on this sim-
ple language model, we present a log-bilinear language
adaptation (LBLA) model below to learn adaptive dis-
tributed word representations for domain adaptation
over sequence labeling tasks.

3.1. Log-Bilinear Language Adaptation Model

We consider the domain adaptation problem from a
source domain S to a target domain T . In the source
domain, we have ls labeled sentences {(Xs

i , Y
s
i )}

ls
i=1

and us unlabeled sentences {(Xs
i )}

ns

i=ls+1 for ns =
ls + us, where Xs

i is the ith input sentence, i.e., a
sequence of words, w1, w2, . . . , wTi

, and Y s
i is its cor-

responding label sequence, e.g. the sequence of POS
tags. Similarly, in the target domain, we have lt la-
beled sentences {(Xt

i , Y
t
i )}

lt
i=1 and ut unlabeled sen-

tences {(Xt
i )}

nt

i=lt+1 for nt = lt + ut. Typically, lt is
much smaller than ls. Though the two domains may
have very different vocabularies, for simplicity we use
a common word vocabulary V for both domains.

We adapt the log-bilinear language model to learn dis-
tributed representations across domains by simulta-
neously modeling two different but related data dis-
tributions in the source and target domains. The
distributed representations are encoded as real-valued
vectors for words in the vocabulary. We refer to the
matrix with all word representation vectors as R and
denote the representation vector for word w as R(w).
Motivated by (Daumé III, 2007), we split the represen-
tation vector into three parts to capture both domain-
sharing and domain-specific properties of each word.
Thus the representation vector for a word w can be
expressed as

R(w) = [Rs(w);Rc(w);Rt(w)] (1)

where Rs(w) represents source-specific latent features,
Rc(w) represents common latent features, and Rt(w)
represents target-specific latent features. Naturally we

assume the source domain contains no target-specific
features and the target domain contains no source-
specific features. In practice, we define two mapping
functions, Φs and Φt, to map the observed source and
target words to cross domain word embeddings

Φs(w) = [Rs(w);Rc(w);0t] (2)

Φt(w) = [0s;Rc(w);Rt(w)] (3)

where 0t is a zero vector in the same size of Rt(w)
and 0s is a zero vector in the same size of Rs(w).
Note that Φs and Φt are different from those mapping
functions exploited in previous work on domain adap-
tation (Daumé III, 2007), since we propose to learn
the latent feature vectors using a log-bilinear language
model while they perform simple feature replication.
The common and domain-specific features learned for
a word w can be different in our proposed model, while
they use two identical copies for both parts.

The three-part distributed representation learning
framework can explicitly model the relationship be-
tween two data sources through the common repre-
sentation part, while still maintaining the unique se-
mantic and syntactic information of each data source
through the domain-specific parts. For example, a
POS tagging task uses WSJ as the source domain and
MEDLINE as the target domain. The word “signal-
ing” in a sentence “signaling that ...” from the source
domain is a verb (VBG), but it is a noun (NN) in a
sentence “signaling pathway ...” from the target do-
main. This syntactic difference of the same word in
two domains can be encoded in the domain-specific
latent features in the distributed representation.

Recall that we have two sets of training sentences
sampled from two domains, S and T . The LBLA
model thus includes a set of conditional distributions,
PD(w|h) of each word w given its previous (nc − 1)
words (denoted as the context h), for each domain
D ∈ {S, T },

PD(w|h; θ) =
exp (−ED(w, h; θ))

ZD(h; θ)
(4)

ZD(h; θ) =
∑

w′

exp (−ED(w
′, h; θ)).

Here ED(w, h; θ) is a log-bilinear energy function,

ED(w, h; θ) = −Φ̂d(w)TΦd(w)− bw (5)

for d ∈ {s, t} correspondingly, and it quantifies the
compatibility of word w with context h in domain D.
bw is the bias parameter used to capture the popularity
of word w across domains. We refer to the bias vector
for all words as b. Φ̂d(w) is the predicted representa-
tion vector for the target word w given its context h in
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the domain indexed by d, which can be computed by
linearly combining the feature vectors for the context
words, such that

Φ̂s(w) =

nc−1∑

i=1

[
Cs

i R
s(wi);C

c
iR

c(wi);0
t
]

(6)

Φ̂t(w) =

nc−1∑

i=1

[
0s;Cc

iR
c(wi);C

t
iR

t(wi)
]

(7)

where Cs
i , C

c
i , C

t
i are the position-dependent con-

text weight matrices for source-specific, common and
target-specific features respectively. Thus the negated
log-bilinear energy function −ED(w, h; θ) measures
the similarity between the current word feature vec-
tor Φd(w) and the predicted feature vector Φ̂d(w).

Overall, the proposed LBLA model simultaneously
models two sets of conditional distributions, PS(.; θ)
and PT (.; θ), respectively on the two domains based
on distributed feature representations. These two sets
of distributions reflect both domain-sharing properties
of the data, parameterized with {Rc, {Cc

i }, bw}, and
domain-specific properties of the data, parameterized
with {Rs, {Cs

i }} and {Rt, {Ct
i}}.

3.2. Training with Noise-Contrastive

Estimation

We propose to train the LBLA model using
noise-contrastive estimation (NCE) (Gutmann &
Hyvärinen, 2010; 2012), which has been recently in-
troduced for training unnormalized probabilistic mod-
els, and is shown to be less expensive than maxi-
mum likelihood learning and more stable than impor-
tance sampling (Bengio & Senécal, 2003) for training
neural probabilistic language models (Mnih & Teh,
2012). Assume that we have a source data distribution
PS(w|h) and a target data distribution PT (w|h), which
are the distributions of words occurring after a partic-
ular context h, on the source domain and the target
domain respectively. We propose to distinguish the ob-
served source data and the observed target data from
noise samples, which are artificially generated by a uni-
gram distribution. We denote the context-independent
noise distribution as Pn(w). We would like to fit the
context-dependent parameter models PS(w|h; θ) and
PT (w|h; θ) to PS(w|h) and PT (w|h) respectively.

We assume that observed samples appear k times less
frequently than noise samples, and data samples come
from the mixture distribution

k

k + 1
Pn(w) +

1

k + 1
PD(w|h) (8)

on a domain D, for D ∈ {S, T }. Since we are fit-

ting PD(w|h, θ) to PD(w|h), we will replace PD(w|h)
with PD(w|h; θ). Then given a context h, the pos-
terior probabilities that a sample word w comes from
the observed source data distribution and the observed
target data distribution are

PS(D = 1|w, h; θ) =
PS(w|h; θ)

kPn(w) + PS(w|h; θ)
(9)

PT (D = 1|w, h; θ) =
PT (w|h; θ)

kPn(w) + PT (w|h; θ)
(10)

However, evaluating Eq. (9) and Eq. (10) is too ex-
pensive due to the normalization computation for
PD(w|h; θ) (Eq. 4). To tackle this issue, instead of
conducting explicit normalization, NCE treats the nor-
malization constants as parameters and parameterizes
the models with respect to learned normalization pa-
rameters zs(h), zt(h) and unnormalized distributions
PS(.|h; θ

0), PT (.|h; θ
0), such that

logPS(w|h; θ) = logPS(w|h; θ
0) + zs(h) (11)

logPT (w|h; θ) = logPT (w|h; θ
0) + zt(h) (12)

where θ = {θ0, zs(h), zt(h)} and θ0 are the parameters
of the unnormalized distributions.

To fit the context-dependent model to the data, given
a context h, we simply maximize an objective JD(h; θ)
for each domain D ∈ {S, T }. It is the expectation of
logPD(D|w, h; θ) under the mixture distribution of the
noise and observed data samples,

JD(h; θ) = kEPn

[
log

kPn(w)

kPn(w) + PD(w|h; θ)

]
+

EPD(.|h)

[
log

PD(w|h; θ)

kPn(w) + PD(w|h; θ)

]
.

(13)

The gradient of this objective function can be com-
puted as

∂

∂θ
JD(h; θ) = (14)

kEPn

[
−PD(w|h; θ)

kPn(w)+PD(w|h; θ)

∂

∂θ
logPD(w|h; θ)

]
+

EPD(.|h)

[
kPn(w)

kPn(w)+PD(w|h; θ)

∂

∂θ
logPD(w|h; θ)

]

Since the conditional distributions for different con-
texts of both domains share parameters, these distri-
butions can then be learned jointly by optimizing a
global NCE objective, which is defined as the combi-
nation of weighted per-context NCE objectives in the
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two domains,

J(θ) =
∑

D∈{S,T }

∑

hD

P (hD)JD(hD; θ) (15)

where P (hD) is the empirical context probability of
hD in domain D.

In practice, given an observation word w in context
h from the domain D, we generate k noise data-
points x1, x2, . . . , xk from the unigram noise distri-
bution Pn(w), and consider an approximate objective

ĴD(w, h; θ) such that

ĴD(w, h; θ) = logPD(D = 1|w, h; θ)+ (16)

k∑

i=1

log (1− PD(D = 1|xi, h; θ)) .

Its gradient can be computed as

∂

∂θ
ĴD(w, h; θ) = (17)

kPn(w)

kPn(w) + PD(w|h; θ)

∂

∂θ
logPD(w|h; θ)−

k∑

i=1

PD(xi|h; θ)

kPn(xi) + PD(xi|h; θ)

∂

∂θ
logPD(xi|h; θ).

Based on this, we then use an empirical global NCE
objective for gradient computation in each iteration
of a gradient ascent training procedure, which can be
expressed as a sum of the generated approximate ob-
jectives for each context-word pair appeared in all sen-
tences of the two domains, i.e.,

Ĵ(θ) =

ns∑

i=1

|Xs

i
|∑

j=1

ĴS(w
s
ij , h

s
ij ; θ) +

nt∑

i=1

|Xt

i
|∑

j=1

ĴT (w
t
ij , h

t
ij ; θ).

(18)

Here ws
ij denotes the jth word of the sentence Xs

i ,
and hs

ij denotes the context of ws
ij , i.e, its previous

(nc − 1) words in the sentence Xs
i ; the same for wt

ij

and its context ht
ij . The gradient of Ĵ(θ) can be eas-

ily obtained by summing over the gradients of each
context-word pair objective, which can be computed
following Equation (17).

3.3. Feature Augmentation with Distributed

Representation

After training the LBLA model, we obtain two feature
mapping functions, Φs (Eq. 2) in the source domain
and Φt (Eq. 3) in the target domain. Then for each
sentence in the source domain, w1, w2, . . . , wT , we use
the feature mapping function Φs to map each word to

a feature vector as augmenting features. Similarly, we
produce a augmenting feature vector for each word in
the target sentences using the feature mapping func-
tion Φt. Finally we combine the labeled sentences from
both domains, represented using both the original fea-
tures and the augmenting features, to train supervised
NLP systems such as POS tagging, syntactic chunking
and named entity recognition, and apply these systems
into the target domain.

4. Experiments

We conducted experiments to evaluate the proposed
LBLA model based domain adaptation technique on
three NLP tasks: POS tagging, syntactic chunking and
named entity recognition. In this section, we report
the experimental results.

For each task, we compared the proposed LBLA
method with the following three baseline methods and
four domain adaptation methods: (1) SRCONLY,
a baseline that conducts training only on the labeled
source data; (2)TGTONLY, a baseline that conducts
training only on the labeled target data; (3) ALL,
a baseline that conducts training on the labeled data
from both domains; (4) SCL, the structural correspon-
dence learning (SCL) domain adaptation technique de-
veloped in (Blitzer et al., 2006); (5) LBL, the method
that uses LBL model to produce distributed represen-
tation features as augmenting features for NLP sys-
tems; (6) EA, the feature augmentation based super-
vised domain adaptation method developed in (Daumé
III, 2007); and (7) EA++, the feature augmentation
based semi-supervised domain adaptation method de-
veloped in (Daumé III et al., 2010).

4.1. Domain Adaptation for POS Tagging

For POS tagging, we used the same experimental
setting as given in (Daumé III, 2007; Blitzer et al.,
2006). The source domain contains articles from Wall
Street Journal (WSJ), with 39,832 manually tagged
sentences from sections 02-21 and 100,000 unlabeled
sentences from a 1988 subset. The target domain con-
tains bio-medical articles from MEDLINE, with 1061
labeled sentences and about 100,000 unlabeled sen-
tences. Among the 1061 labeled bio-medical sentences,
we used 561 sentences as test data while keeping the
rest 500 sentences as labeled training data from the
target domain.

4.1.1. Distributed Representation Learning

We built a vocabulary with all sentences from the
source and target domain. In order to reduce the vo-
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cabulary size, we mapped lower frequency (0-2) words
to a single unique identifier in our vocabulary and
mapped sole-digit words into a single unique identifier.
On all processed sentences except the 561 biomedical
sentences which we will keep as test data, we applied
the proposed LBLA model to perform distributed rep-
resentation learning. There are a few hyperparame-
ters to be set when applying LBLA model. We set
the word-embedding sizes for source-specific features,
target-specific features and domain-sharing (common)
features equally as 100. Thus the total size of a word
embedding is 300. We set the context size nc as 3,
which means we only consider the previous two words
for each target word. We set the k value for noise-
contrastive estimation as 25. We randomly initial-
ized the word embeddings R, the position-dependent
context weight matrices C = {Cd

i : i ∈ {1, 2}, d ∈
{c, s, t}}, and initialized the bias vector b, and the
normalization parameters {zs(h), zt(h)} with all ze-
ros. The same hyperparameters and initializations
were used for LBL model as well. After augmenting
each sentence with the learned representation features,
standard supervised POS tagging was performed.

4.1.2. Experimental Results for POS Tagging

For supervised POS tagging, we used the SEARN algo-
rithm, which is used in (Daumé III, 2007) as well. We
used 39,832 labeled newswire sentences from the WSJ
domain and 500 labeled biomedical sentences from the
MEDLINE domain as training data, while the test
data contains 561 biomedical sentences with 14,554
tokens. Under this setting, the test results of the com-
parison methods in term of error rate are reported in
Table 1. We can see that the LBLA method appar-
ently outperforms all the other comparison methods
on cross-domain POS tagging.

We then conducted further experiments to investigate
the performance of each method by varying the num-
ber of labeled training sentences from the target do-
main from 50 to 500. The test results in term of ac-
curacy are plotted in Figure 1. We can see that the
LBLA method consistently outperforms all the other
comparison methods across the range of different num-
ber of training sentences from the target domain. To
investigate the significance of the improvements the
proposed LBLA method achieved over the other meth-
ods, we conducted McNemar’s significance tests for
labeling disagreements (Gillick & Cox, 1989) between
the LBLA method and the other comparison methods
(except the two basic baselines SRCONLY and TG-
TONLY), with p < 0.05 being significant. We found
all the test comparisons between LBLA method and
the other methods are significant, as shown in Table 2.

Table 1. Test results of POS tagging in term of error rate.

Methods Error Rates

SRCONLY 12.02%

TGTONLY 4.15%

ALL 5.43%

SCL 3.90%

LBL 3.58%

EA 3.61%

EA++ 3.52%

LBLA 3.09%
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Figure 1. Test results of POS tagging with different num-
ber of labeled training sentences from the target domain.

Table 2. Statistical significance (McNemar’s) test results in
term of p value for cross domain POS tagging.

Null Hypothesis p-value

LBLA vs. ALL 7.4× 10−6

LBLA vs. SCL 3.5× 10−5

LBLA vs. LBL 6.9× 10−3

LBLA vs. EA 2.1× 10−4

LBLA vs. EA++ 4.6× 10−2

4.2. Domain Adaptation for Syntactic

Chunking

For syntactic chunking, we used WSJ as the source do-
main and Brown corpus data as the target domain. We
used the same source domain data as we did in POS
tagging experiments. The target domain contains 3
sections (ck01-ck03) of Brown corpus data, with 426
labeled “general fiction” sentences and about 57,000
unlabeled sentences. Labeled sentences from both do-
mains are tagged with syntactic chunking tags in IOB2



Domain Adaptation with Probabilistic Language Adaptation Model

Table 3. Test results of syntactic chunking in term of error
rate.

Methods Error Rates

SRCONLY 5.22%

TGTONLY 6.63%

ALL 4.33%

SCL 4.15%

LBL 3.86%

EA 3.97%

EA++ 3.82%

LBLA 3.30%

format, which is a standard format widely used for syn-
tactic chunking. In IOB2 format, each chunk tag has
two parts. The first part denotes the position of the
corresponding token in the chunk and the second part
represents the chunk type. For example, the chunk tag
B-VP is used for the first word of a verb phrase.

50 100 150 200
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Figure 2. Test results of cross-domain syntactic chunking
with different number of labeled training sentences from
the target domain.

4.2.1. Distributed Representation Learning

We built a vocabulary with all sentences in the con-
structed source domain and target domain. We ap-
plied the same processing procedures used in the POS
tagging experiments. On all processed sentences ex-
cept 226 “general fiction” sentences from the target
domain which we will use as test data, we applied
the LBLA and LBL models separately to perform dis-
tributed representation learning. We used the same
hyperparameter setting and initializations as we did in
POS tagging experiments. After augmenting each sen-
tence with the learned representation features, stan-
dard supervised syntactic chunking can be performed.

4.2.2. Experimental Results for Syntactic

Chunking

We used the same SEARN algorithm for supervised
syntactic chunking. We used 40,000 labeled newswire
sentences from the source domain and 200 “general
fiction” sentences from the target domain as training
data, and used 226 “general fiction” sentences from
the target domain as test data. In addition to the tra-
ditional features, we also extracted POS tag features
as inputs. Under this setting, the test results in term
of error rate are reported in Table 3, which show the
proposed LBLA based cross domain syntactic chunk-
ing outperforms all the other methods. We then con-
ducted experiments to investigate the performance of
each method by varying the number of labeled train-
ing sentences from the target domain between 50 and
200. The test results in term of accuracy are plotted
in Figure 2. The proposed method demonstrated con-
sistent advantages over all the other methods. By us-
ing McNemar’s paired significance tests with p < 0.05
being significant, we verified that the proposed LBLA
based method significantly outperforms other methods
as shown in Table 4.

Table 4. Statistical significance (McNemar’s) test results in
term of p value for cross domain syntactic chunking.

Null Hypothesis p-value

LBLA vs. ALL 7.2× 10−5

LBLA vs. SCL 1.9× 10−4

LBLA vs. LBL 8.5× 10−3

LBLA vs. EA 2.9× 10−4

LBLA vs. EA++ 3.8× 10−2

4.3. Domain Adaptation for Named Entity

Recognition

For named entity recognition task, we used the same
source data and target data as the syntactic chunk-
ing experiments. The labeled data are tagged with
named entity chunking tags in IOB2 format. The task
is to label each word with one of the named entity
tags, which represents the position of the word in the
named entity chunk and the type of the named entity.
For example, I-LOC is used for the remaining words of
a phrase that represents a location and B-PER is used
for the first word of a phrase that represents a person.
Words located outside of named entity chunks receive
the tag O, representing miscellaneous names. We also
used the same procedure of distributed presentation
learning as we employed in syntactic chunking experi-
ments to produce augmentation features for supervised
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Table 5. Test results in term of error rate for cross domain
named entity recognition.

Methods Error Rates

SRCONLY 2.87%

TGTONLY 2.75%

ALL 2.36%

SCL 2.21%

LBL 1.97%

EA 2.06%

EA++ 1.93%

LBLA 1.53%

named entity recognition.

4.3.1. Experimental Results for Named

Entity Recognition

For supervised named entity recognition task, again
we used 40,000 labeled newswire sentences from the
source domain and 200 labeled “general fiction” sen-
tences from the target domain as training data, and
used 226 “general fiction” sentences from the target
domain as test data. We used the same SEARN al-
gorithm to perform named entity recognition. In ad-
dition to previous feature set, we also extracted syn-
tactic chunking tags as phrase chunking features. The
experimental results in term of error rate are reported
in Table 5. We can see that the proposed LBLA repre-
sentation learning based method outperforms all other
methods. We then investigated how the number of
labeled training sentences from the target domain af-
fects the performance of each comparison method on
named entity recognition. The results in term of ac-
curacy are plotted in Figure 3, which show the pro-
posed method clearly outperforms all other methods
across the range of experiments. By using McNemar’s
paired significance test, we verified the improvements
achieved by the proposed method over the other meth-
ods are mostly significant, as shown in Table 6.

Table 6. Statistical significance (McNemar’s) test results in
term of p value for cross domain named entity recognition
tasks.

Null Hypothesis NER

LBLA vs. ALL 6.2× 10−4

LBLA vs. SCL 4.3× 10−3

LBLA vs. LBL 3.7× 10−2

LBLA vs. EA 7.5× 10−3

LBLA vs. EA++ 8.4× 10−2
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Figure 3. Test results of named entity recognition with dif-
ferent number of labeled training sentences from the target
domain.

5. Conclusion

In this paper, we proposed to tackle domain adapta-
tion problems for sequence labeling tasks in NLP by
developing a log-bilinear language adaptation (LBLA)
model. The LBLA model learns a distributed repre-
sentation of the words across domains which encodes
both generalizable features and domain-specific fea-
tures. The distributed representation vector for each
word can be then used as augmenting features for su-
pervised natural language processing systems. We em-
pirically evaluated the proposed LBLA based domain
adaptation method on WSJ and MEDLINE domains
for POS tagging systems, and on WSJ and Brown cor-
pora for syntactic chunking and named entity recog-
nition tasks. The results show that LBLA method
consistently outperforms all other comparison meth-
ods for cross domain sequence labeling tasks.
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Daumé III, H. and Marcu, D. Domain adaptation for
statistical classifiers. Journal of Artificial Intelli-
gence Research, 26:101–126, 2006.
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