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Abstract

Recently, a variety of representation learn-
ing approaches have been developed in
the literature to induce latent generalizable
features across two domains. In this paper,
we extend the standard Hidden Markov
Models (HMMs) to learn distributed state
representations to improve cross-domain
prediction performance. We reformu-
late the HMMs by mapping each discrete
hidden state to a distributed representa-
tion vector and employ an expectation-
maximization algorithm to jointly learn
distributed state representations and model
parameters. We empirically investigate the
proposed model on cross-domain part-of-
speech tagging and noun-phrase chunking.
The experimental results demonstrate the
effectiveness of the proposed distributed
state representation learning of HMMs on
facilitating domain adaptation.

1 Introduction

Domain adaptation aims to obtain an effective pre-
diction model for a particular target domain where
labeled training data is scarce by exploiting la-
beled data from a related source domain. Domain
adaptation is very important in the field of natu-
ral language processing (NLP) as it can reduce the
expensive manual annotation effort in the target
domain. Various NLP tasks have benefited from
domain adaptation techniques, including part-of-
speech (POS) tagging (Blitzer et al., 2006; Huang
and Yates, 2010a), chunking (Daumé III, 2007;
Huang and Yates, 2009), named entity recognition
(Guo et al., 2009; Turian et al., 2010), dependency
parsing (Dredze et al., 2007; Sagae and Tsujii,
2007) and semantic role labeling (Dahlmeier and
Ng, 2010; Huang and Yates, 2010b).

In a typical domain adaptation scenario of NLP,
the source and target domains contain text data

of different genres (e.g., newswire vs biomedical
(Blitzer et al., 2006)). Under such circumstances,
the original lexical features may not perform well
in cross-domain learning as different genres of
text may use very different vocabularies, which
produces cross-domain feature distribution diver-
gence and feature sparsity issue. A number of
techniques have been developed in the literature
to address this cross-domain feature divergence
and sparsity, including clustering based word rep-
resentation learning methods (Huang and Yates,
2009; Candito et al., 2011), word embedding
based representation learning methods (Turian et
al., 2010; Hovy et al., 2015) and some other rep-
resentation learning methods (Blitzer et al., 2006).

In this paper, we extend the standard Hidden
Markov Models (HMMs) to perform distributed
state representation learning and induce context
aware distributed word representations for domain
adaptation. Instead of learning a single discrete la-
tent state for each observation in a given sentence,
we learn a distributed representation vector. We
define a state embedding matrix to map each latent
state value to a low dimensional distributed vec-
tor and reformulate the three local distributions of
HMMs based on the distributed state representa-
tions. We then simultaneously learn the state em-
bedding matrix and the model parameters using an
expectation-maximization (EM) algorithm. The
hidden states of each word in a sentence can be
decoded using the standard Viterbi decoding pro-
cedure of HMMs, and its distributed representa-
tion can be obtained afterwards by a simple map-
ping with the state embedding matrix. We then
use the distributed representations of the context
aware words as their augmenting features to per-
form cross-domain POS tagging and noun-phrase
(NP) chunking.

The proposed approach is closely related to the
clustering based method (Huang and Yates, 2009)
as we both use latent state representations as gen-



eralizable features. However, they used standard
HMMs to produce discrete hidden state features
for each observation word, we induce distributed
state representation vectors, which is similar as
the word embedding based method (Hovy et al.,
2015). Our distributed HMMs can also be more
space efficient than the standard HMMs. More-
over, we incorporate local context information into
observation feature vectors to perform representa-
tion learning in a context-aware manner. Hence
the induced distributed state representations have
larger representing capacities and generalizing ca-
pabilities for cross-domain learning.

2 Related Work

A variety of representation learning approaches
have been developed in the literature to address
NLP domain adaptation problems. The cluster-
ing based word representation learning methods
perform word clustering within the sentence struc-
ture and use word cluster indicators as generaliz-
able features to address domain adaptation prob-
lems. Huang and Yates (2009) used the discrete
hidden state of a word under HMMs as augment-
ing features for cross-domain POS tagging and NP
chunking. Candito et al. (2011) empirically inves-
tigated using Brown clusters (Brown et al., 1992)
for out-of-domain statistical parsing.

The word embedding based representation
learning methods learn a dense real-valued rep-
resentation vector over a word as latent features
for domain adaptation. Turian et al. (2010) em-
pirically studied using word embeddings learned
from hierarchical log-biLinear models (Mnih and
Geoffrey, 2008) and neural language models (Col-
lobert and Weston, 2008) for cross-domain NER
tasks. Hovy et al. (2015) used the word embed-
dings learned from the Skip-gram Model (SGM)
(Mikolov et al., 2013) to develop a POS tagger for
Twitter data with labeled newswire training data.

Some other representation learning methods
have been developed tackle NLP cross-domain
problems as well. For example, Blitzer et
al. (2006) proposed a structural correspondence
learning (SCL) method for POS tagging, which
first selects a set of pivot features (occurring fre-
quently in the two domains) and then models the
correlation between pivot features and non-pivot
features to induce generalizable features.

Figure 1: Hidden Markov Models with Distributed
State Representations (dHMM).

3 Proposed Model

In this paper, we proposed a novel distributed
Hidden Markov Model (dHMM) for representa-
tion learning over sequence data. This model ex-
tends the Hidden Markov Models (Rabiner and
Juang, 1986) to learn distributed state representa-
tions. Similar as HMMs, a dHMM (Figure 1) is a
two-layer generative graphical model, which gen-
erates a sequence of observations from a sequence
of latent state variables using Markov properties.
Let O = {o1,o2, . . . ,oT } be the sequence of ob-
servations with length T , where each observation
ot ∈ Rd is a d-dimensional feature vector. Let
S = {s1, s2, . . . , sT } be the sequence of T hid-
den states, where each hidden state st has a dis-
crete state value from the total H hidden states
H = {1, 2, . . . ,H}. Besides, we assume that
there is a low dimensional distributed representa-
tion vector associated with each hidden state. Let
M ∈ RH×m be the state embedding matrix where
the i-th rowMi: denotes them-dimensional repre-
sentation vector for the i-th state. Previous works
have demonstrated the usefulness of discrete hid-
den states induced from a HMM on dealing with
feature sparsity in domain adaptation (Huang and
Yates, 2009). However, expressing a semantic
word by a single discrete state value is too re-
strictive, as it has been shown in the literature
that words have many different features in a multi-
dimensional space where they could be separately
characterized as number, POS tag, gender, tense,
voice and other aspects (Sag and Wasow, 1999;
Huang et al., 2011). Our proposed model aims
to overcome this inherent drawback of standard



HMMs on learning word representations. Given
a set of observation sequences in the two domains,
the dHMM induces a distributed representation
vector with continuous real values for each obser-
vation word as generalizable features, which has
the capacity of capturing multi-aspect latent char-
acteristics of the word clusters.

3.1 Model Formulation
To build the dHMMs, we reformulate the stan-
dard HMMs by defining three main local distribu-
tions based on the distributed state representations:
the initial state distribution, state transition distri-
bution, and the observation emission distribution.
We use Θ to denote the set of parameters involved.

First we use a multinomial initial state distribu-
tion,

P (s1; Θ) = φ(s1)Tλ,

where φ(st) ∈ {0, 1}H is a mapping function
which produces a H-dim indicator vector with a
single 1 value at its st-th entry, λ ∈ [0, 1]H is the
parameter vector such that λT1 = 1.

We then define a multinomial logistic regression
model for the state transition distribution,

P (st+1|st; Θ) =
exp

{
φ(st+1)TWMTφ(st)

}
Z(st; Θ)

where W ∈ RH×m is the parameter matrix and
Z(st; Θ) is the normalization term.

Finally, we assume that observation ot ∼
N
(
φ(st)

TMQ,σId
)
, and use a multivariate

Gaussian model for the emission distribution,

P (ot|st; Θ) =
exp

{−1
2σ κ(st,ot)κ(st,ot)

T
}

(2π)d/2σd/2
,

where κ(st,ot) = φ(st)
TMQ− oTt ,

with model parameters Q ∈ Rm×d and σ ∈ R.
The standard HMMs (Rabiner and Juang, 1986)

use conditional probability tables for the state tran-
sition distribution, which grows quadratically with
respect to the number of hidden states, and the
emission distribution, which grows linearly with
respect to the observed vocabulary size, which
is usually very large in NLP tasks. Instead, the
dHMMs can significantly reduce the sizes of these
conditional probability tables by introducing the
low dimensional state embedding vectors, and the
dHMM is much more efficient in terms of mem-
ory storage. In fact, the complexity of dHMMs

can be independent of the vocabulary size by us-
ing flexible observation features. We represent the
dHMM parameter set as Θ = {M ∈ RH×m,W ∈
RH×m, Q ∈ Rm×d, σ ∈ R, λ ∈ [0, 1]T }, where
m is a very small constant.

3.2 Model Training

Let D denote the set of N sequences of data
{O1, . . . , On, . . . , ON}, we can compute the log-
likelihood on the data set (we drop the superscript
n for the convenience of notation)

L(Θ) = log
∑
S

P (O,S; Θ)

≥ L(Θ)− KL(Q(S)||P (S|O; Θ)) (1)

where Q(S) is any non-zero distributions over
the hidden state variables S and KL(.||.) de-
notes the Kullback-Leibler (KL) divergence. Let
F(Q,Θ) denote the lower bound of the log-
likelihood in (1), we then maximize it by using
an iterative expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) until reach a lo-
cal convergence. We first randomly initialize the
model parameters while forcing λ in the feasible
region (λT1 = 1). For the (k+1)-th iteration, given
{Q(k),Θ(k)}, we then sequentially update Q with
an E-step (2) and update Θ with an M-step (3).

Q(k+1) = arg max
Q

F(Q,Θ(k)) (2)

Θ(k+1) = arg max
Θ

F(Q(k+1),Θ) (3)

3.3 Domain Adaptation with Distributed
State Representations

We use all training data from the two domains
to train dHMMs for local optimal model pa-
rameters Θ∗ = {M∗,W ∗, Q∗, σ∗, λ∗}. We
then infer the latent state sequence S∗ =
{s∗1, s∗2, . . . , s∗T } using the standard Viterbi al-
gorithm (Rabiner and Juang, 1986) on the
labeled source training sentences and target
test sentences. The corresponding distributed
state representation vectors can be obtained as
{M∗Tφ(s∗1),M∗Tφ(s∗2), . . . ,M∗Tφ(s∗T )}. We
then train a supervised NLP system (e.g., POS tag-
ging or NP chunking) on the labeled source train-
ing sentences using the distributed state represen-
tations as augmenting input features and perform
prediction on the augmented test sentences.



Table 1: Test performance for cross-domain POS tagging and NP chunking.

Systems POS Tagging (Accuracy) NP Chunking (F1)
All Words OOV Words All NPs OOV NPs

Baseline 88.3 67.3 0.86 0.74
SGM (Hovy et al., 2015) 89.0 71.4 0.88 0.78

HMM (Huang and Yates, 2009) 90.5 75.2 0.91 0.85
dHMM 91.1 76.0 0.93 0.88

4 Experiments

We conducted experiments on cross-domain part-
of-speech (POS) tagging and noun-phrase (NP)
chunking. We used the same experimental datasets
as in (Huang and Yates, 2009) for cross domain
POS tagging from Wall Street Journal (WSJ) do-
main (Marcus et al., 1993) to MEDLINE do-
main (PennBioIE, 2005) and for cross domain NP
chunking from CoNLL shared task dataset (Tjong
et al., 2000) to Open American National Corpus
(OANC) (Reppen et al., 2005).

4.1 Representation Learning

We first built a unified vocabulary with all data
in the two domains. We then conducted latent
semantic analysis (LSA) over the sentence-word
frequency matrix to get a low dimensional rep-
resentation vector for each word. We use a slid-
ing window with the size of 3 to construct the d-
dimensional feature vector (d = 1500) for each
observation in a given sentence. We set the num-
ber of hidden states H to be 80 and the dimension
m = 20. We used all the labeled and unlabeled
training data in the two domains to train dHMM.

4.2 Results and Discussion

We used the induced distributed state representa-
tions of each observation as its augmenting fea-
tures to train a Conditional Random Fields (CRF)
based on the CRFSuite package (Okazaki, 2007)
on the labeled source sentences and perform pre-
diction on the target test sentences. We com-
pared with the following systems: a Baseline sys-
tem without representation learning, a SGM-based
word embedding system (Hovy et al., 2015), and
a discrete hidden state-based clustering system
(Huang and Yates, 2009). We use the word id
and orthographic features as the baseline features
for POS tagging and add POS tags for NP chunk-
ing. We reported the POS tagging accuracy for all
words and out-of-vocabulary (OOV) words (which
appear less than three times in the labeled source

training sentences), and NP chunking F1 scores
for all NPs and only OOV NPs (whose beginning
word is OOV word).

From Table 1, we can see that the Baseline
method performs poorly on both tasks especially
on the OOV words/NPs, which shows that the
original lexical-based features are not sufficient to
develop a robust POS tagger/NP chunker for the
target domain with labeled source training sen-
tences. By using unlabeled training sentences
from the two domains, all representation learning
approaches increase the cross-domain test perfor-
mance especially on the OOV words/NPs. Those
improvements over the Baseline method demon-
strate that the induced latent features do alleviate
feature sparsity issue across the two domains and
help the trained NLP system generalize well in
the target domain. Between these representation
learning approaches, the proposed distributed state
representation learning method outperforms both
of the word embedding based and discrete HMM
hidden state based system. This suggests that by
learning distributed representations in a context-
aware manner, dHMMs can effectively bridge the
domain divergence.

5 Conclusion

In this paper, we extended the standard HMMs to
learn distributed state representations. We map
each state variable to a distributed representation
vector and simultaneously learn the state embed-
ding matrix and other model parameters with an
EM algorithm. The experimental results on cross-
domain part-of-speech tagging task and noun-
phrase chunking task demonstrate the effective-
ness of the proposed approach for domain adapta-
tion. In the future, we plan to apply our approach
to other cross-domain tasks such as named entity
recognition or semantic role labeling. We also
plan to extend our method to learn cross-lingual
representations with auxiliary resources such as
bilingual dictionaries or parallel sentences.
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